VMAcS: Virtualization and Resource Management in Accelerator-based Heterogeneous Multi-core Systems

Presented by: Vishakha Gupta
Georgia Tech: Karsten Schwan, Harshvardhan Kharche, Ada Gavrilovska
HP Labs: Niraj Tolia, Vanish Talwar, Partha Ranganathan
In a Nutshell

- **Motivation**
 - Industry trend towards heterogeneous multicores
 - Benefits offered by virtualization for broader application domain

- **Problem statement**
 - Implement and evaluate virtualization of accelerator based systems
 - Provide performance guarantees to guests running on such a system

- **Work done**
 - Virtualized specific off-chip accelerator – NVIDIA GPU
Outline

- System architecture
 - Virtualized Homogeneous Multicore Systems
 - Virtualization of Accelerator based Systems
- Management extension
- Evaluation
- Related work
- Future work and conclusion
Virtualized Homogeneous Multicore Systems

Management Domain

Traditional Device Drivers
Management Policies

Hypervisor

VM
Applications
Guest OS

VM
Applications
Guest OS

General purpose multicores

Traditional Devices
Virtualization of Accelerator based Systems
Extending Xen for GPU

Management Domain (Dom0)
- Mgmt Extension
- GPU Backend
- Traditional Device Drivers
- GPU Driver

VM
- GPU Application
- CUDA API
- GPU Frontend
- Linux

VM
- GPU Application
- CUDA API
- GPU Frontend
- Linux

Hypervisor (Xen)

General purpose multicores

Compute Acc (NVIDIA GPU)

Traditional Devices

NVIDIA’s CUDA – Compute Unified Device Architecture for managing GPUs
Outline

- System architecture
- Management extension
 - Scheduling in Dom0
 - System highlights
- Evaluation
- Related work
- Future work and conclusion
System Highlights

- **Frontend:**
 - Applications in guest VM can be multi-threaded
 - Currently one application at a time
 - Call path is synchronous from application’s view

- **Backend**
 - Multiple domains
 - Multiplex resources across multiple GPUs
 - Simple load balancing and admission control
 - A general **framework** for virtualization and resource management
Outline

- System architecture
- Management extension
- Evaluation
 - Testbed details
 - Benchmarks
 - Preliminary results
 - Discussion
- Related work
- Future work and conclusion
Testbed Details

- **Hardware configuration:**
 - Xeon quad-core @ 2.5GHz and 2GB memory
 - NVIDIA 8800 GTX PCIe card

- **Software configuration**
 - Xen 3.2.1 running 2.6.18 Linux kernel
 - CUDA SDK 1.1 with gpu driver 169.09
Micro-benchmarks

- Bitonic sorting
 - Smaller data size sort
 - Tested with 512 elements

- Matrix multiplication
 - Used 48x48 floating pt. matrices for the numbers

- MersenneTwister
 - Pseudo-random number generator
 - Tested with generation of 12000 random numbers

- BlackScholes
 - Financial algorithm for call/put option prices
 - 30000 options with 512 iterations
Benchmark - CDO

- Collateralized debt obligation pricing model
- Financial product which takes the risk of a portfolio and segments into several tranches
- Multiple compute kernels involved
 - Generating uniform random numbers
 - Cholesky decomposition
 - Matrix multiplication, Sorting etc.
- Adjustable number of iterations and portfolio size
Guest GPU Access Performance

Total execution time (without host data assignment)

Less than 15% slowdown in the worst case
Without resource management, calls can get variably delayed due to interference from other domain.
Ongoing and Future Work

- **Ongoing**
 - Optimizations to GPU virtualization code
 - Thorough measurement of benchmarks
 - Scheduling in Dom0 and related measurements

- **Future**
 - Heterogeneous multicore scheduling
 - SLA management policies
 - Scalability and stability models/analyses
 - Power-awareness in the scheduler
Related Work

- Scheduling extension – [Cypress], [Xen Credit Scheduling], [QoS Adaptive Communication], [Intel Shared ISA Heterogeneity]
 - Differences in (system design – heterogeneity)

- GPU Virtualization: [OpenGL], [VMWare DirectX] [VMGL]
 - Difference in API level virtualization

- Other related work
 - Accelerator Frontend or multi-core programming models: [Georgia Tech Harmony], [Georgia Tech Cellule], [IBM ALF], [Intel QuickAssist], [9p from Plan 9]
 - Some examples: [Intel Tolapai], [Intel Larrabee], [AMD Fusion], [IBM Cell], [LANL Roadrunner]