Fair & Elastic Resource Allocation in Cloud Computing Environments

GT: Mukil Kesavan, Ada Gavrilovska, Karsten Schwan

VMware: Orran Krieger, Irfan Ahmad, Ravi Soundararajan
Goals

• Scalable resource management ~ 10k hosts
• Load-Balance Resource Consumption
• Work for Broad Class of Workloads
• Elasticity: Demand based allocation of resources
Cloud Architecture
Imbalance across Cloud

Customer → Cluster → CC → Cluster → Customer
Dealing with Imbalance
Automation Actions

- Move capacity across management hierarchy
 - Preserve association of VMs to management agents
 - Granularity: Hosts
- Deploy existing centralized solutions with management agents
Hierarchical RM Architecture

RM scalability achieved by two additional levels of automated load balancing
Algorithm Design

• Resource Demand based allocation
 – Measure, Aggregate & Predict

• Honor Static Constraints
 – Reservations, Limits, Fault Tolerance etc.

• Time Scales of Operation

• Scalability

• Host Selection
Techway Infrastructure Setup

VMs/Apps

Infra. Software

ESX Hosts

RAID Array

Force 10 Switch

Sensors
Load Balancing Testbed

Cloud Resource Manager

VC (250 Hosts)

Clus

Clus

Clus

Clus

Clus

Out-of-Band Perf. Validator

VM Resource Allocations

Cloud Workload QoS Metrics

750 Hosts

Cloud Workload VMs
Benchmarks

1. VMMark
2. Hadoop
3. Nutch: Map-Reduce Web Search
4. Voldemort/YCSB: Distributed K/V Store
5. Linpack HPL: MPI Based HPC Code
Evaluation Plan/Metrics

1. Cloud Resource Utilization
 - Aggregate Utilization of Powered On M/Cs
2. Load Imbalance across CCs & Clusters
 - Steady State Convergence
3. Adaptation to Changes/Spikes in Res. Usage
4. Workload Quality Metric (e.g. Search Query Time)
5. Algorithm Overhead – Enforcing Mgt. Actions
Other Research Projects

• Storage I/O Allocation with Isolation at the App Level
• Black-box Monitoring & VM Ensemble Detection
• Power-centric Mgmt & Billing
• Generic, Flexible Management Overlays
Thank You