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Abstract

We present an architecture of a trust framework that can be
utilized to intelligently tradeoff between security and perfor-
mance in a SAN file system. The primary idea is to differ-
entiate between various clients in the system based on their
trustworthiness and provide them with different levels of se-
curity/performance. Client trustworthiness is evaluated dy-
namically using a customizable trust model by online mon-
itoring of the client’s behavior. We also describe the inter-
face of the trust framework with a block level security solu-
tion for an out-of-band virtualization based SAN file system
(SAN FS [7]). The proposed framework can also be easily
extended to provide differential treatment based on data sen-
sitivity, using a configurable parameter of the trust model.

1 Introduction
The designers of security solutions have consistently debated
the tradeoffs between levels of security and the resulting per-
formance. Many choose to find a static balance between
the two, compromising strictest form of security for better
performance. Another practice has been partitioning into
groups, with each group having different levels of privileges
(security clearance). In such an approach, a group of users
(say, within a corporate firewall) might get direct access to
data and receive unencrypted transmissions, providing high
performance, while another group (outside the firewall) has
to authenticate rigorously and can only receive encrypted
data, with lower levels of performance. The choice of a so-
lution requires careful planning, analysis of security threats
and the sensitivity of stored data.

Consider the case of network attached storage systems,
like an out-of-band virtualized SAN file system, IBM SAN
FS [7]. In SAN FS, hosts access metadata from dedicated
metadata servers (MDS) and access data directly from the
storage controllers. For providing block level security in
such file systems, capability-based solutions [1, 4, 8, 10] re-
quire each access at the storage controller to be validated (en-
cryption/decryption of capability) for correctness. It is con-
ceivable to design solutions where a certain set of clients∗

are not validated for correctness‡, thus providing them di-
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rect access to data for better performance. However, it is
essential to design a dynamic framework where clients are
provided/revoked this trusted access based on their online
behavior. For example, a malicious application can attempt
exploiting a trusted client. A dynamic evaluation system can
adjust the trust metric based on the new incorrect behavior
and thus dynamically revoke the trusted mode access. Simi-
larly using this mechanism, deploying new clients will not re-
quire an assignment to a certain group, rather clients will au-
tomatically develop the trustworthiness and thus gain trusted
mode access.

In this paper, we present such a trust framework for SAN
FS like storage systems. It compromises of (1) a trust
model, which dictates the metrics used for evaluation of
client trustworthiness and, (2) trust distribution compo-
nent, which includes the monitoring mechanisms and pro-
vides infrastructure required to evaluate the metrics. We
also describe the design of a block-level security solution for
SAN FS and its interface with the proposed trust framework
through a capability-based protocol. Using this combined
design, we provide dynamic and configurable trust evalua-
tion, which allows online differential treatment of clients and
can be easily extended to configure the model to account for
data sensitivity, thus, providing differential treatment based
on nature of data being requested.

The rest of the paper is organized as follows. In Section-2,
we first briefly explain the design of a capability based block-
level security mechanism for SAN FS. Then in Section-3,
we describe the proposed trust framework interfaced with
the security mechanism. In Section-4 we discuss the related
work in security solutions for SANFS-like storage systems
and also the use of trust frameworks in other areas like P2P.
We finally conclude in Section-5 with a note on future course
of work.

2 Block-level Security Design

In this section, we will first briefly describe the design of a
capability-based block-level security protocol for SAN FS.
This acts as the underlying security solution which will be
extended to support the trust framework. Our design is a
small variation of various existing protocols [1, 4, 8]. First,
we describe the security model assumed for this design.

2.1 Security Model

For our design, we distinguish between network layer se-
curity and the application level security. The network



layer security mechanisms prevent against address spoofing,
packet sniffing or other network layer attacks like man-in-
the-middle. It is a well-researched area and off-the-shelf
standards like IPSec are available to ensure network layer
security. In addition, we also assume standard hashing tech-
niques like MD5 for ensuring message integrity. In this pa-
per, we only focus on application level security targeted at
our application SAN FS. Other than the network layer guar-
antees, the clients are considered untrusted. The storage con-
trollers and metadata servers are assumed to be trusted and
in physically protected environments and share a secret key.
We also assume data access rights to be associated with each
client application, rather than the client. This prevents buggy
(malicious or otherwise) applications from accessing wrong
storage. As a result, the authentication/authorization is done
at a level of application credential, which can be a secure dig-
ital certificate or any other tamper-proof certification. Also,
the responsibility of keeping a credential safe is that of the
application.

In rest of the discussion, unless specifically mentioned, a
“client” refers to an application credential and not a host.

2.2 Secure Protocol

In this section, we give a brief description of our security
protocol. We will provide complete implementation details
in the extended version of the paper.

Compared to the insecure SAN FS, one of the main mod-
ifications in our design is to perform access control checks
at the metadata servers (MDS). The MDS should be able
to do authentication and access-right checks before giving
metadata information to any client. The access can be de-
nied based on both security/access policies and also con-
sistency requirements e.g. another client already holds an
exclusive lock on that file. Such authentication and autho-
rization mechanisms can be implemented, based on various
known solutions and we call this layer at the MDS - the
authorization server (AS) layer. Note that it can be imple-
mented outside the scope of the MDS as well, in which case
it is contacted before any metadata information is provided
to the client. At the storage controller side, we use a secu-
rity layer called validator which is responsible for validating
client accesses.

Now, when a client requests metadata from the MDS, the
AS checks if access can be granted to the client. If yes, the
MDS returns metadata along with a token (capability) of the
form:

token = K{ID|EL|AR|TS}
where ID is the unique request ID, EL is the block extent list
sent to the client for the request, AR is the access rights for
that metadata (read/write), TS is the timestamp at which the
token was generated and ’|’ indicates concatenation. We use
K{} to indicate encryption using the secret shared between
MDS and storage controllers; it can be a symmetric key or
an efficient keyed-hash MAC [3].

When the client sends a block request to the storage con-
troller, it includes this token in the request. The security layer
at the storage controller decrypts the token and checks if the
block requested is included in the blocks contained in the
extent list in the token. Also if the client is attempting to
write a block, then it has appropriate access rights. If it does,
access is granted else denied. This ensures that the storage
controller does not provide access to any client that has not
been specifically authorized by the MDS.

For every successful request, the storage controller sends
back a new token containing an updated timestamp, thus re-
freshing the token.

refreshed token = K{ID|EL|AR|TSnew}
where TSnew is the timestamp when the request was served
by the storage controller.

For revocation of this capability, we use a two-step ap-
proach (using ID and TS). We will also analyze revocation
mechanisms in prior research [4, 10].

1. Each request gets a unique integer ID from the MDS.
Whenever a client gives up a lock, the MDS notifies the
storage controller, by sending an explicit revoke mes-
sage, indicating the ID whose lock has been revoked.
Thus, when the client tries to access the storage, the
controller first checks if its ID has been revoked by the
MDS and deny access if that is the case.

2. To prevent prolonged state maintenance at the storage
controller to keep the revocation list, we use a token-
expiration mechanism, which automatically expires the
token after a certain time (τ ). This allows the controller
to maintain the revocation list only for τ units of time.
It works as follows.

When the client gives up a lock, the MDS notifies the storage
controller of the ID whose lock has been revoked. The stor-
age controller keeps the ID in its revocation list for τ units of
time. During that duration if the client tries to access the stor-
age controller, the controller rejects the request, based on the
ID being revoked. As a result, the client will not be able to
refresh its token. After τ units of time, the storage controller
dumps the revocation state for the ID and will still deny client
request since the TS in its token will be older than τ units and
thus, expired.
τ can be set as a system parameter based on workloads

- a larger τ requires the storage controller to maintain state
for a longer period of time, which is feasible for low load
scenarios. The restriction such a mechanism poses is that a
client has to generate a request within τ units of time to keep
its token refreshed. Notice that pre-fetching of metadata is
also handled since the token contains information about all
the metadata that a client received from the MDS (and thus
has access to) and a successful request for any single block
in the metadata will refresh the token for the rest of the
metadata as well. In addition, the client can regain access



to the data by getting a new token from the MDS. This can
potentially be piggybacked with the data locking and lease
renewal mechanisms [7].
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1. < Credential | Request for Metadata for Fi >
2. < Metadata | K { ID | EL | AR | TS } >

3. < Requested Block | K { ID | EL | AR | TS }>
4. < Data Block | K { ID | EL | AR | TSnew } >
5. < Give up lock >

6. < REVOKE ID >

Figure 1: Protocol

Among other research, the revocation has been handled
in different ways. [4, 10] use object version numbers, while
[1] uses a capability ID like ours and optimizes by grouping
capabilities and ability to revoke an entire group. Incorporat-
ing grouping in our design, combined with its self-expiration
capabilities approach, can lead to reductions of revocation
traffic and memory utilization at the validator. The complete
secure protocol is shown in Figure-1.

3 Trust Framework

In this section, we first discuss our proposed trusted mode ac-
cess mechanism (Section-3.1). Then, we discuss the kind of
trust ratings/models that we use. We will also describe vari-
ations to our proposed infrastructure and tradeoffs involved
between them.

3.1 Trusted Mode Access

In our trust infrastructure, we associate a trust rating with
each application (client credential) and store that information
at the MDS. Now when a client requests metadata from the
MDS, the MDS checks the trust rating based on its credential
and then according to a policy (as described in Section-3.2)
can decide to trust the client. The objective now is to prevent
the encryption and decryption costs at the storage controller
for each data block request, as in the original design, and
let the storage controller service all requests for the client
without checking the validity.

This is accomplished using another new message between
the MDS and the storage controller. Specifically, the MDS
will send a

< TRUST Credential >

message to the storage controller, which indicates to the con-
troller that the client is fully trusted to access the correct stor-
age and thus whenever the client requests certain blocks, the
controller should just fulfill the request, without decrypting
the token. It also does not need to refresh the token (prevent-
ing encryption). Also, the credential is assumed to be trusted
until the MDS sends an explicit

< REV OKE Credential >

message to the controller.
To prevent clients with good trust ratings from exploiting

this mode of access, we use a strict trust model and an audit-
ing mechanism described in Section-3.2.

We believe that this trusted access mechanism can have a
significant performance impact, since in any enterprise set-
ting, there will potentially be a number of applications that
are completely trusted or have access to all storage (moni-
toring applications, compliance applications). Those appli-
cations can always operate in such a trusted mode, thus elim-
inating the need of validating tokens, which requires expen-
sive cryptographic operations. From the storage controller
point of view, it only has to keep an additional state of all
trusted credentials, which is not a prohibitive overhead.

Given the general description of how we enable trusted
mode access, we discuss the details of our trust infrastructure
next.

3.2 Trust Infrastructure

The use of trust ratings has been extensively researched in
reputation based IR systems, recommendation systems, P2P
systems and other ecommerce settings [6, 9, 11]. There are
two key components of any trust-based infrastructure:

• Trust Model: This determines the model of trust asso-
ciated with each client, for example, whether any client
has only a binary trust rating - 1 indicating trusted and 0
indicating not trusted or a continuous rating in [0, 1], 1
being most trusted and 0 being least trusted. It also de-
termines how a measurable metric is mapped to a trust
rating, for example, if client accesses right storage more
than 80% of time, it is trusted (trust rating 1 for the for-
mer model), or trust rating is equal to the percentage of
correct access (trust rating 0.8 for the latter model).

• Trust Distribution: This component is responsible for
providing the infrastructure that is required to evaluate
the metrics, used by the trust model to compute the rat-
ing. For example, how to calculate number of successful
transactions (for the example models above) and how
to disseminate this information to appropriate agents,
which act on these ratings.

First we discuss the trust model component of our design.

3.2.1 Trust Model

For the purpose of this discussion, assume that the trust rat-
ings are somehow available to the MDS. We explain in the
trust distribution component of how that is achieved. Also,
for the rest of the discussion, a transaction refers to an access
of storage at the storage controller.

In our design, we use a [0,1] trust model with each client
having a trust rating from 0 to 1. The trust rating is dynamic
and changes with the behavior of the client. We also set the
probability of a client getting a trusted mode access equal to



its trust rating, e.g. a client with trust rating of 0.6 has a 60%
chance of getting a trusted mode access and it retains the ac-
cess until its credential is revoked. The revocation can occur
when it no longer has access to the metadata it requested (e.g.
if it gave up the lock) or its trust rating drops (the exact policy
in this case is described below).

In addition, the client applications have different trust val-
ues for each storage controller. This is to prevent a buggy, but
not malicious, application that accesses its storage controller
in a correct manner but incorrectly accesses another storage
controller, from being penalized on its correct accesses. Also
this potentially helps us in doing application error detection.
However, this approach may increase the trust ratings store
size and may make it prohibitive when there are a large num-
ber of client applications. In those scenarios, we recommend
a single rating across all controllers.

As discussed earlier, we want to have a strict trust model,
so that clients are strongly discouraged from accessing wrong
storage. Also, it must be relatively tough to build a good trust
rating when starting from scratch. This is required to prevent
a malicious application to start afresh and gain a good trust
rating easily and then exploiting it. We achieve both of these
requirements in the following manner. First, we set a thresh-
oldψ, on the total number of transactions done before a client
can ever be allowed to operate in the trusted mode. After
that threshold is achieved, the clients probability of getting a
trusted mode access is proportional to the ratio of the correct
transactions to the total number of transactions. Specifically,

Pr(Trusted Access) = Trust Rating =
0, #tr < ψ

(#ctr
#tr )α #tr ≥ ψ

where #tr is the total number of transactions and #ctr is the
number of correct transactions and 0 ≤ α ≤ 1 is a con-
figurable parameter determining the strictness of the model
desired.

The threshold ψ prevents applications from gaining a
good trust rating immediately. After that, the probability of
getting a trusted mode access is determined by the probabil-
ity of the access being correct (equal to the ratio of correct
transactions to the total number of transactions). It can be ar-
gued that the threshold is achieved by just doing a large num-
ber of transactions, irrespective of the correctness. However,
it is highly likely that a malicious/buggy application can be
detected before the threshold is achieved, and in addition, if
those transactions were largely incorrect, the probability of
getting a trusted mode access will be very low (which can be
further penalized by setting low values of α).

As discussed above, once a client gets trusted mode
access, it retains access until it is specifically revoked by the
MDS. We set this revocation policy as follows. Whenever
a client accesses the wrong storage, its trust value drops
(because the ratio drops) and that indicates the MDS to
revoke its trust credential (if it is in trusted access mode).
The mechanism of identifying a wrong access is detailed in
the trust distribution component of the architecture.

Extensions

Note that till now the trust rating is only a function of client
behavior. However, in our trust model, it is easy to adjust the
client trust rating for a storage controller based on the kind
of data stored in that controller. For example, if an organi-
zation stores extremely critical data at a particular storage,
it can ensure that the trusted mode access is not allowed or
extremely difficult to get for that storage controller. This can
be achieved by simply setting a very small value of α (α=0
means no trusted mode access except for absolutely perfect,
#ctr = #tr, applications). This provides an easy extension by
incorporating differential treatment based on data sensitivity,
in our design.

Another possible extension is to provide different levels of
trusted mode access. For example, for a moderately trusted
application, we can use smaller keys in encryption of the ca-
pability to provide a better level of performance, but still with
more security than a complete trusted access.

3.2.2 Trust Distribution

Now, we discuss the trust distribution component of our in-
frastructure. This details the mechanisms required to obtain
the information necessary to compute trust ratings.

Given the above trust model, MDS requires statistics
about the number of transactions and the number of correct
transactions for each client at every storage controller. Dur-
ing a non-trusted mode access, the security layer at the stor-
age controller can easily compute these numbers. Both #tr
and #ctr are maintained as counters, with #tr incremented for
every access and #ctr incremented if the access was granted
after validating the token.

On the other hand, when a client accesses storage in the
trusted mode, the token is not decrypted and thus it can not
be immediately ascertained that the access was correct or not.
In this case, we use an auditing mechanism. Note that even in
trusted mode access, the MDS does give a valid token for the
first time when the client requests the metadata. In order to
catch any violations during the trusted mode access, the secu-
rity layer logs the encrypted token along with the requested
blocks information. An auditing process will decrypt the to-
ken at a later time and deduce whether the client accessed the
right storage. Thus, while in non-trusted mode the overheads
are due to a decryption and an encryption, the trusted-mode
access has the overhead of logging (extra writes for logs) and
auditing which are amortized by the total number of requests.
We believe that this mechanism will still reduce individual
response times.

In addition, we can extend this auditing mechanism to
be a probabilistic mechanism as well. For example, during
a trusted mode access, a sample of all accesses is actually
logged, thus reducing the overheads. The size of the sample
can be further determined based on client behavior, for ex-
ample, the number of times the client accessed wrong storage
during a trusted mode access (indicating malicious behavior).



We continue to investigate this and will present an efficient
mechanism in the detailed version of the paper.

The trusted mode access logs have the following structure:

< Credential | Token | TS1 | Block-1, Block-2, . . . >

where the credential is the application credential in the
trusted-mode access. The token is the first token, the stor-
age controller received from the client when the trusted mode
access was initiated, TS1 is the timestamp of a first data re-
quest using this token and the blocks are the addresses of data
blocks accessed by the client during the trusted-mode access.
The TS1 entry of the log is to prevent the scenario where a
malicious client sends an expired token and tries to access the
blocks allowed under that token, even after the access rights
were revoked∗. The auditing process later decrypts the token
and verifies that the blocks accessed were allowed under the
access rights of that token. Note that it is possible for a client
to use multiple tokens within a single trusted-mode session.
In that case all those tokens are logged.

The auditing process can either be located at the storage
controller using its free CPU cycles or on a different server
(possibly at one of the MDS) which can access the trusted-
mode access logs to update the counts. The metadata servers
then update the trust ratings in batches periodically. Thus,
the trust rating is not modified after every client transaction,
rather modified in batches. This is done to prevent excessive
communications between the controller and the MDS. If the
auditing process is located at the MDS, the total overheads
are reduced, since the trust ratings can be evaluated during
the auditing process itself.

It is possible for the storage controller to store the trust
ratings at the controllers itself and probabilistically decide
whether to verify the token or not. The reason we chose the
MDS to store trust ratings was to have flexibility in control-
ling the trust process. For example, it would be easy to up-
date the trust model, change the values of ψ and α param-
eters or change the policy for granting trusted-mode access.
Also it is easier to perform static trust settings, for example
an administrator can explicitly specify an application to be
trusted (say, a monitoring application which has access to all
storage) without waiting for it to gather a good trust rating.
Using MDS hosted trust value, we have eliminated the need
of a controller to have any knowledge of trust ratings.

4 Related Work

There has been significant amount of work in security of out-
of-band virtualized SAN file systems [1, 4, 8, 10]. These so-
lutions are broadly all capability-based solutions and differ
in details of capability design and revocation mechanisms.
Another approach towards security has been through the Ob-
ject Store initiative [5, 2], in which data is assumed to be
accessed in the form of objects with each object having as-
sociated access rights with it. All of these solutions attempt

∗If the malicious application accesses blocks outside the extent list in the
token, it will be captured by the auditing process

to provide secure protocols for complete security under their
assumed models. Our work is distinguished from the prior
research due to the tradeoff mechanisms in which we choose
to differentiate between clients and the data being requested,
and give different levels of performance. The tradeoff mech-
anism is designed in the form of a trust framework, utilizing
the trust related work in P2P, and ecommerce [6, 9, 11].

5 Conclusions and Future Work
In this paper, we presented a trust framework which is used
to provide different levels of security and performance to dis-
tinct clients based on their system behavior. The trust model
is customizable and dynamic to automatically promote and
revoke the levels of access to the clients. In addition, the
model can be easily extended to provide different levels of
security based on the nature of data being requested. We also
presented the interface of the trust framework with a block-
level security solution for a SAN file system. In the future,
we plan to empirically evaluate the framework design for var-
ious benchmarks and also increase the efficiency of the trust
distribution component.
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