
An Approach for Fault Tolerant and Secure Data Storage in Collaborative Work
Environments∗

Arun Subbiah and Douglas M. Blough
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30332 USA

{arun,dblough}@ece.gatech.edu

Technical Report GIT-CERCS-05-13
April 2005

Abstract

We describe a novel approach for building a secure and fault tolerant data storage service in collaborative
work environments. In such environments, sensitive data must be accessible only to a select group of people,
whose membership may change over time. Key management issues are a recognized problem in such envi-
ronments. We eliminate this problem for confidential and secure data storage by using perfect secret sharing
techniques for storing data. Perfect secret sharing schemes have found little use in managing generic data be-
cause of the high computation overheads incurred by existing schemes. Our proposed approach uses a novel
combination of XOR secret sharing and replication mechanisms, which drastically reduce the computation over-
heads and achieve speeds comparable to standard encryptionschemes. The combination of secret sharing and
replication manifests itself as an architectural framework, which has the attractive property that its dimension
can be varied to tradeoff amongst different performance metrics. We evaluate the properties and performance
of the proposed framework to show that the combination of perfect secret sharing and replication can be used to
build efficient fault-tolerant and secure distributed datastorage systems for collaborative work environments.

Keywords: Distributed data storage, secret sharing, replication, confidentiality, Byzantine fault tolerance, col-
laborative environments

1 Introduction

The storage of sensitive information has been studied extensively in various contexts ranging from cryptographic
keys [1] to generic data [2]. Computing power, network bandwidth, and secondary storage capacities have mean-
while increased dramatically, and seem to show no signs of abatement. While this trend has certainly helped in
providing more secure storage services and higher capacities, it has also empowered attackers in compromising
storage servers and gaining access to critical data. Also due to this trend, the scope of “sensitive” information
has broadened from personal information such as cryptographic keys and passwords, to generic data that must be
available to only a select group of people. This paper describes a novel fault-tolerant and secure distributed storage
system designed for use in collaborative work environments, where stored data is shared by a group of people
whose membership may change over time.

The traditional approach for storing data securely and reliably is to encrypt the data for confidentiality, and
store the encrypted data using replication-based techniques for fault tolerance. This approach has the benefits of

∗This research was supported by the National Science Foundation under Grant CCR-0208655.



being computationally and storage efficient. However, whendata must be stored for extended periods of time,
it can be expected that there will be changes in the list of users authorized to read or write the encrypted data.
Changes in the access list will require re-encrypting the stored data with a new cryptographic key, which may be
cumbersome. For fine grained access list management, each file or document stored at the data storage service
would require a unique key. The number of keys could then become large, and the keys would then have to be
stored at the data storage service itself for easy access by authorized users. Obviously, these keys must be stored
at the storage service in a secure and fault tolerant manner without using additional keys.

We solve these problems by using a combination of replication-based schemes and perfect secret sharing
techniques for storing data. Perfect secret sharing schemes encode data intoshares such that only certain valid
combinations of shares can be used to reconstruct the encoded data, while invalid combinations of shares give no
information on the encoded data. By storing these shares at different servers, the encoded data is kept confidential
as long as not enough servers are compromised. Confidentiality is achieved without encryption, thus avoiding the
need for the storage and management of cryptographic keys. Perfect secret sharing schemes have the additional
property that the shares can be changed, or “renewed”, distributively such that the encoded data still remains the
same. This process of share renewal, when performed often, can provide strong data confidentiality.

On the other hand, unlike private-key encryption schemes, most perfect secret sharing schemes are compu-
tationally expensive. Verifiable secret sharing schemes are typically used with perfect secret sharing schemes to
detect incorrect shares that may be returned by faulty or compromised servers. Such techniques further increase
the computation time during the encoding and decoding of data. We solve these problems by 1) using XOR se-
cret sharing for fast computations, and 2) using replication-based schemes to detect incorrect shares that may be
returned by faulty or malicious servers. This combination of secret sharing and replication manifests itself as an
architectural framework, where servers are arranged in theform of a rectangle or a grid. The proposed architec-
tural framework, which we callGridSharing, has the useful property that its dimensions can be varied totrade off
several performance metrics.

The proposed approach is also useful for storing sensitive archival data. Encryption techniques may not be
suitable for such purposes, as in the long run, encryption algorithms can be broken, or increased computing re-
sources would require increasing the sizes of the keys. In our proposed framework, long-term confidentiality can
be provided by performing share renewal often. Another drawback of encryption is the assumption that the data
to be encrypted is random in nature, while that is often not the case. Encrypted data could be subject to cryptanal-
ysis, and it may be possible for an adversary to obtain some information on the encrypted data. In our proposed
framework, we assume that not more than a threshold servers are compromised (between two consecutive share
renewals), and use perfect secret sharing schemes, such as the XOR secret sharing scheme, which are information
theoretically secure. Thus, even if an adversary obtained shares from a threshold servers, he still cannot obtain any
information on the encoded data.

Our contributions are as follows: We describe a novel approach for building a secure and fault tolerant data
storage service in collaborative work environments. Key management issues are a well-known problem in such
environments, where data may be shared by a group of people whose membership may change over time. We elim-
inate this problem for confidential and secure data storage by using perfect secret sharing techniques for storing
data. Perfect secret sharing schemes have found little use in managing generic data because of the high computation
overheads such schemes incur especially when supplementedwith mechanisms to achieve Byzantine fault toler-
ance. Our proposed approach uses a novel combination of XOR secret sharing and replication mechanisms, which
drastically reduce the computation overheads and achieve speeds comparable to standard encryption schemes. The
combination of secret sharing and replication manifests itself as an architectural framework, whose dimension can
be varied to tradeoff amongst different performance metrics. We evaluate the properties and performance of the
proposed framework to show that the combination of perfect secret sharing and replication can be used to build
efficient fault-tolerant and secure distributed data storage systems for collaborative work environments.

2



2 Related Work

Several works [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] have emerged recently that consider the problem of providing secure
distributed data storage services. The confidentiality of the stored data is provided either by encrypting the data
with a key and storing the key also at the store using secret sharing [1, 13], or secret sharing the data itself, or a
combination of both.

In this paper, we use secret sharing schemes to provide data confidentiality. Most works use imperfect secret
sharing schemes, such as Rabin’s IDA [14] algorithm, where the knowledge of fewer than the threshold number
of shares can reveal some information of the encoded data. Such coding algorithms are thus not information-
theoretically secure, but allow savings in storage space. Given enough time, an adversary may compromise enough
servers to learn the encoded data. Thus, to provide long-term confidentiality, the secret sharing scheme should
allow share renewal, where the shares are changed in a distributed fashion such that the encoded secret is not
recovered in the process and is unchanged. To our knowledge,no share renewal scheme for imperfect secret
sharing has been developed to date. Perfect secret sharing schemes, on the other hand, allow share renewal.
Perfect secret sharing schemes are information-theoreticsecure, meaning the leakage of an insufficient number of
shares to an adversary does not reveal any information on theencoded data.

Several works have combined replication and perfect secretsharing [2, 15, 16]. [2] presents a scheme where
data is encrypted using a key, and both are stored at the storage servers. The data is stored in replicated form in
a quorum, while the key is stored using secret sharing. [15] considers a quorum system where the shares of a
secret are stored at all the servers, and a quorum of shares are needed to recover the secret. The secrets stored are
access rights, and quorum properties are used to grant or revoke access rights. Thus, these two works consider the
use of perfect secret sharing for some special types of data and not for generic data. Performance during reads
and writes is not addressed. [16] considers perfect secret sharing schemes for generic data. They use a verifiable
secret sharing scheme along with replication for high availability. Their work primarly addresses the overheads
associated with data dissemination, but does not address the performance issues with using verifiable secret sharing
schemes and perfect secret sharing schemes. [17] uses perfect secret sharing along with verifiable secret sharing
for storing archival data. Extensive performance measurements of such schemes are given, but the problem of high
computation overheads is not addressed.

CODEX [18] is a data storage system that avoids key management issues by encrypting secrets using the
public key of the data storage service. The private key is secret shared at the data storage servers so that up to
some threshold malicious servers can collude and still not be able to recover the service’s private key to decrypt
the data. They report their computation overheads to be in the hundreds of milliseconds for128 byte data secrets,
which is over a hundred times slower than our measurements ofthe Rijndael encryption algorithm. Though we
have not implemented their approach and compared their performance against ours, we note that due to their use of
expensive cryptographic operations, their computation latencies are expected to be much higher than our approach.

XOR secret sharing has been considered in [19]. They show howdifferent capabilities such as share renewal
and share recovery can be implemented with XOR secret sharing. For this, existence of a trusted device, called
theAccumulator, is assumed. They further assume that during secret sharingand secret recovery, no server returns
erroneous responses. Performance benefits associated withthe use of XOR secret sharing are not discussed.

3 Background

3.1 Secret Sharing Schemes

Secret sharing schemes are techniques where asecret is encoded into several fragments, calledshares, such that
certain combinations of shares can together reveal the encoded secret. Inperfect secret sharing schemes, invalid
or unauthorized combinations of shares give no informationon the encoded secret. Thus, perfect secret sharing

3



schemes are information-theoretic secure. Perfect secretsharing schemes also allow share renewal, which is the
process of distributively changing the shares such that theencoded secret is the same. Share renewal must be done
often to provide strong data confidentiality.

In perfectthreshold secret sharing schemes, a secret is encoded intoq shares such that anyk out of theq shares
can be used to recover the encoded secret, while any(k − 1) shares give no information on the encoded secret.
Such schemes are also called(k, q)-threshold schemes. Shamir’s scheme [1] is an example of a(k, q)-threshold
perfect secret sharing scheme, wherek ≤ q.

In the next subsection, we describe Ito, Saito, and Nishizeki’s share assignment scheme [20], which realizes
any access structure using a(q, q)-threshold secret sharing scheme.

3.2 Ito, Saito, and Nishizeki’s Share Assignment Scheme

We describe Ito, Saito, and Nishizeki’s share assignment scheme [20] for a threshold access structure. Consider a
set ofr participants{P1, P2, ..., Pr} such that any(m+1) participants can pool their shares to recover the encoded
secret. For a secret sharing scheme realizing this access structure, first list the setB consisting of all possible
combinations ofm participants. Thus,B = {B1, B2, ..., Bq}, where q =

(

r

m

)

.

Next, encode the secret using a(q, q)-threshold secret sharing scheme, whereq =
(

r

m

)

. Let the shares thus
generated be denoted bys = {s1, s2, ..., sq}, where q =

(

r

m

)

. The set of shares assigned to participantPi is given
by the functiong(i) = {sj, Pi /∈ Bj, 1 ≤ j ≤ q}. Thus, each participant receives

(

r−1
m

)

shares, and each share is
stored at(r − m) participants.

For example, consider a set of four participants such that atleast three participants must pool their shares
to find the encoded secret. Thenr = 4, m = 2, and the setB = {(P1, P2), (P1, P3), (P1, P4), (P2, P3),
(P2, P4), (P3, P4)}. Next, generate6 shares of the secret such that all six of them are needed to decode the
secret. Denote the six shares by{s1, s2, s3, s4, s5, s6}.

From the share assignment functiong,

ParticipantP1 gets shares(s4, s5, s6),
ParticipantP2 gets shares(s2, s3, s6),
ParticipantP3 gets shares(s1, s3, s5),
ParticipantP4 gets shares(s1, s2, s4).

Thus, any two participants can pool their shares to find out only five of the six shares. Without the knowledge of
the sixth share, the encoded secret cannot be found out. Any three participants can pool their shares to find out all
six shares needed to recover the encoded secret.

4 Computation Overhead of Perfect Secret Sharing Schemes

In this section, we show the high computation overhead of some well known secret sharing schemes, which is the
main reason why such schemes are not widely used in secure andfault tolerant distributed data storage systems.
We contrast the computation overheads with that of the Rijndael (AES) symmetric-key encryption algorithm to
illustrate this point. We then show that XOR secret sharing combined with replication-and-voting mechanisms has
a computational overhead similar to that of Rijndael. All performance measurements reported in this paper were
done on an Intel Pentium4 3GHz processor with256 MB RAM running Linux 2.6.9. The MIRACL [21] library
was used to implement the cryptographic algorithms.

Shamir’s scheme [1] is an example of a(k, q)-threshold perfect secret sharing scheme, wherek ≤ q. Table 1
lists the time taken to compute shares (sharing), and the time taken to compute the secret given enough shares

4



Prime
Length

(k, q) = (3, 5) (k, q) = (6, 10)
Sharing Recovery Sharing Recovery

160 bits 4.956 ms 826 µs 14.87 ms 1.446 ms
512 bits 6.192 ms 1.290 ms 20.00 ms 2.064 ms
1024 bits 10.53 ms 2.145 ms 34.65 ms 3.575 ms

Table 1: Computation time during secret sharing and secret recovery for an 8 KB block of data using
Shamir’s secret sharing scheme

(recovery), for an8 KB block of data using Shamir’s scheme, for a selection of(k, q) values. Secret sharing
and recovery are done during writes and reads, respectively, and their overheads are therefore important. For
Shamir’s scheme, since the computations are done modulo a prime p, the size of this modulus is also a factor in
the throughput measurements.

Shamir’s scheme alone cannot be used to detect incorrect shares returned by malicious servers during reads.
One method of detecting incorrect shares returned by malicious servers is distributed fingerprints [22], where the
hash of the shares are stored as a hash vector at all servers. However, share renewal cannot be used with this
approach because it is not possible to update the hash vectorduring a distributed renewal of the shares. Another
technique to safeguard against malicious servers is verifiable secret sharing. In such schemes, some common
data for all the shares is computed and stored at all the servers. During reads, the correct common data is first
determined, and then each share is checked against this common data to detect incorrect shares. With verifiable
secret sharing schemes, it is possible to perform a distributed share renewal of the shares and the additional data
required for verifiability. A widely used method for verifiable secret sharing is Feldman’s scheme [23]. Table 2
gives the computation times during secret sharing and secret recovery of an8 KB block of data when Feldman’s
scheme is used with Shamir’s scheme.

Prime
Length

(k, q) = (3, 5) (k, q) = (6, 10)
Sharing Recovery Sharing Recovery

160 bits 2.461 s 2.616 s 4.956 s 7.228 s
512 bits 1.037 s 1.097 s 2.090 s 2.795 s
1024 bits 728 ms 747.5 ms 1.464 s 1.809 s

Table 2: Computation times for verifiable secret sharing andverifiable secret recovery for an 8 KB block of
data using a combination of Shamir’s and Feldman’s secret sharing schemes. Computations in Feldman’s
scheme were implemented modulo a prime of length 1025 bits.

For comparison purposes, the throughputs of the AES Rijndael symmetric-key encryption algorithm are given
in Table 3. The implementation of Rijndael in the MIRACL library [21] was used for the measurements.

Key length Encryption Decryption

16 bytes 205 µs 205 µs
24 bytes 230 µs 241 µs
32 bytes 282 µs 271 µs

Table 3: Time taken to encrypt and decrypt an 8 KB block of datausing the Rijndael (AES) encryption
scheme in CBC mode.

5



From Tables 1–3, it is clear that the computation times of Shamir’s scheme and Feldman’s scheme are far
higher than those of symmetric-key encryption and, in fact,this performance is well below what is acceptable for
modern data storage systems. The secret recovery computation time of verifiable secret sharing schemes are at least
3000 times slower than the Rijndael decryption times. The above analyses also indicate, in part, why perfect secret
sharing techniques have not been adopted for generic data todate. However, as mentioned previously, perfect secret
sharing has several benefits as compared to encryption-based techniques: it provides information-theoretic secrecy,
the shares can be renewed for strong data confidentiality, and there are no cryptographic keys to be secured and
managed. To reduce the computation overheads incurred during perfect secret sharing, we employ the following
two mechanisms:

Mechanism 1: Use a (q, q) perfect secret sharing scheme:Whenk = q, i.e., all the shares are needed to recover
the secret, then a simple bit-wise XOR secret sharing can be used. If each data bit is thought of as a separate secret,
then each share is a single bit and XOR of theq shares (orq bits) gives the encoded secret bit. In practice, XOR
secret sharing can be implemented with word-wide operations for efficiency. Table 4 lists the computation times
during secret sharing and secret recovery for a selection of(q, q) values for XOR secret sharing. Note that XOR
secret sharing is also a perfect secret sharing scheme. The only constraint compared to the general(k, q)-threshold
scheme withk < q is that allq shares must be recovered to reconstruct the secret. Compared with the computation

(q, q) Secret sharing Secret recovery

(5, 5) 333 µs 35 µs
(10, 10) 732 µs 60 µs
(20, 20) 1.494 ms 140 µs

Table 4: Computation times for secret sharing and secret recovery of an 8 KB block using the XOR secret
sharing scheme

times using Shamir’s scheme (Table 1), the computation times using XOR secret sharing are much lower.

Mechanism 2: Use replication-and-voting to determine incorrect shares during reads: To detect incorrect
shares that may be returned by malicious servers during reads, we propose that each share is replicated at enough
servers such that if at least a threshold of servers return the same share during a read, then that share is correct and
can be used for the secret recovery computation. This is the traditional technique used for managing replicated
data, which we apply for each share. If the number of malicious servers is denoted byb, then for each share at least
(2b + 1) responses must be received. The value returned by at least(b + 1) servers is the correct value of the share
being read.

b Computation Time

1 13.75 µs
2 25 µs
3 40 µs
4 50 µs
5 65 µs

Table 5: Computation times for voting out of 2b+1 responses to determine a share of size 8 KB. b is the max-
imum number of malicious servers that can return incorrect values for the requested share. Measurements
reflect the best case where there are no incorrect responses.

Table 5 gives the computation times for determining each share from(2b+1) responses, whereb is the number
of possibly malicious servers. Note that the numbers are given for each share. Hence, the computation time during

6



secret recovery must now include the product of the time taken to determine each share from(2b + 1) responses
and the number of shares. The secret sharing computation time will remain unchanged as no additional shares are
generated. The secret sharing and recovery computation times for XOR secret sharing along with voting forb = 3
are shown in Table 6. Compared with the computation times of verifiable secret sharing schemes (Table 2), the

(q, q) Secret sharing Secret recovery

(5, 5) 333 µs 235 µs
(10, 10) 732 µs 460 µs
(20, 20) 1.494 ms 940 µs

Table 6: Computation times for secret sharing and secret recovery of an 8 KB block using the XOR se-
cret sharing scheme along with voting to determine incorrect shares that may be returned by up to b = 3
malicious servers during reads.

computation times of XOR secret sharing with voting are muchlower, and are in the same order of magnitude as
those of the Rijndael encryption algorithm (Table 3).

Summarizing, perfect secret sharing schemes can be used forfault-tolerant and secure distributed data storage
by combining them with verifiable secret sharing techniques. Using the computation latency of the Rijndael en-
cryption algorithm as the benchmark, we have shown that wellknown verifiable secret sharing techniques such as
the combination of Feldman’s scheme with Shamir’s scheme are too slow to be used for large volumes of data.
Verifiable secret sharing techniques can be avoided by usingreplication-and-voting mechanisms. This, along with
the use of XOR secret sharing, drastically lowers the computation times, making them comparable to the Rijndael
encryption algorithm execution times. In the rest of the paper, we describe in detail how XOR secret sharing with
replication-and-voting mechanisms can be combined, and the benefits of this approach.

5 Fault and Adversary Model

Since our data storage service must offer availability, integrity, and confidentiality guarantees for the stored data,
we identify the following three types of server faults:

• Crash: A server is said to becrashed if it stops performing all computations and neither sends nor receives
messages on the network.

• Byzantine: A Byzantine-faulty server can deviate arbitrarily from itsspecified protocol. A Byzantine faulty
server can also reveal the shares stored locally and its internal state to an adversary.

• Leakage-only: A server is said to exhibit a leakage-only fault if it can reveal its shares and state to an
adversary, but executes its specified protocol faithfully.

Crash and Byzantine faults are primarily related to processbehavior, and hence used widely in fault tolerant
distributed algorithms. Works in computer security instead view faults as due to an adversary, and classify the
adversary’s intent. Apassive adversary compromises servers only to learn the locally stored data or the servers’
states. Anactive adversary, on the other hand, takes full control of a compromised server. An active adversary can
learn the compromised server’s data and its state, and can also force the compromised server to behave maliciously.
The proposed fault model merges these two traditional faultmodels. Crash faults are primarily for fault tolerance.
Byzantine faults take into account compromises due to an active adversary. The leakage-only faults are due to a
passive adversary. A faulty server’s behavior can belong toonly one of the three fault types. In particular, a server
cannot simultaneously crash and be leakage-only faulty.

7



The reason for including a leakage-only fault (or the reasonfor including passive and active adversary models)
is because an adversary may be interested in learning the stored data and avoid generating suspicious activity that
might allow the security breach to be detected. Byzantine-fault tolerant algorithms are usually costly, and so it
should be desirable to treat this fault separately from the leakage-only fault. For example, in the context of the
proposed framework, the secret sharing scheme could be designed such that a substantial number of shares are
needed to recover the encoded data, but the Byzantine-faulttolerant read and write protocols could use a small
Byzantine fault threshold to reduce overheads.

The proposed fault model is also useful in analyzing works incomputer security. Works in computer security
almost always do not consider crash faults, thereby overlooking some fault tolerance properties provided naturally
by many algorithms. For example, in a(k, q) access structure wherek out of q servers must be queried to obtain
a threshold shares for secret recovery, up to(q − k) servers can crash, and up to(k − 1) servers can be leakage-
only faulty. The crash fault tolerance is usually overlooked when specifying the confidentiality aspects of the
access structure. To achieve Byzantine fault tolerance amongst the sameq servers, the crash and leakage-only
fault tolerances will in general have to be lowered. In storage systems where data is encrypted and then replicated
at multiple sites, all the sites can be leakage-only faulty,as the confidentiality of the encrypted data rests on the
secure maintenance of the decryption key, which could be stored elsewhere. The proposed fault model can thus be
used as a common ground for reasoning about works in fault tolerance and security, and in recognizing the fault
tolerance and security properties of works exclusively in either of these two areas.

We use the threshold fault model for each of the three types offaults. We assume that not more thanc servers
can crash, not more thanb servers can be Byzantine-faulty, and not more thanl servers can exhibit leakage-only
faults.

6 Combining Secret Sharing and Replication: The GridSharing Framework

Our approach for a fault tolerant and secure data storage service is to use perfect threshold secret sharing for data
confidentiality, and to use replication-based mechanisms to manage each share for crash and Byzantine fault toler-
ance. This section describes the architectural framework,calledGridSharing, that combines these two principles.

TheGridSharing framework consists ofN servers, where not more thanc servers can crash, not more thanb
servers can be Byzantine faulty, and not more thanl servers can exhibit leakage-only faults. TheN servers are
arranged in the form of a logical rectangular grid withr rows andN

r
columns, where for simplicity it is assumed

thatN is a multiple ofr. The arrangement is depicted in Figure 1.

Servers in the same row store replicas of the same shares. Thus, tolerance to crash and Byzantine failures is
achieved. Data confidentiality is achieved using secret sharing. The secret sharing is done across rows. Thus, as
per the terminology used in Section 3.2, ther rows are ther participants amongst which shares are distributed.
Since up tol servers can be leakage-only faulty (reveal their shares to an adversary) and up tob Byzantine-faulty
servers can also do the same, shares from up to(l + b) rows can be disclosed to an adversary. From Section 3.2,

an
(

(

r

l+b

)

,
(

r

l+b

)

)

-threshold perfect secret sharing scheme can be used to tolerate(l + b) faulty servers inr rows.

Figure 1 gives an example whereN = 20 servers are arranged in a rectangular grid withr = 4 rows. If it is
necessary to tolerateb = 1 Byzantine fault andl = 1 leakage-only fault, then a

(

(4
2

)

,
(4
2

)

)

= (6, 6) XOR secret

sharing scheme will have to be used. Assume a secret fileS is encoded into six file shares(s1, s2, s3, s4, s5, s6)
such thatS = s1 ⊕ s2 ⊕ s3 ⊕ s4 ⊕ s5 ⊕ s6. That is, each bit in the fileS is the XOR of the corresponding bits in
the filess1, s2, s3, s4, s5, s6. Then according to the share assignment functiong given in Section 3.2,

Servers in row1 gets shares(s4, s5, s6),
Servers in row2 gets shares(s2, s3, s6),
Servers in row3 gets shares(s1, s3, s5),

8



Figure 1: The GridSharing framework: N servers are arranged in a logical grid having r rows. The secret
sharing is done across rows, and shares are replicated alongrows. The figure shows the setup for N = 20
servers, leakage-only fault threshold l = 1, Byzantine fault threshold b = 1, and crash fault threshold c = 6.
Note that each server holds 3 shares.

Servers in row4 gets shares(s1, s2, s4).

Note that shares are replicated along rows. The replicationis done to achieve Byzantine and crash fault tolerance.
When files are read and written, the shares are read and written using replication-based protocols. For the purposes
of this analysis, we assume the following simple replication protocol. To write a secret fileS, the user generates
(

r

l+b

)

files (shares) such that their bitwise-XOR gives the secret file S. For a given grid configuration, the share
assignment for each server is given by the share assignment functiong and the fact that servers in the same row
store the same shares. The user writes to each server its assigned shares. Thus, in the example depicted in Figure 1,
the user will write to each server in row1 the shares(s4, s5, s6), to each server in row2 the shares(s2, s3, s6), and
so on.

When fileS is to be read at a later time, the same user or a different user will need to only contact some set of
servers to read all the shares. Consider how shares4 is read in our example. The shares4 is stored at rows1 and
4, and since each row has five servers, the shares4 is stored at ten servers. The user needs to contact only(2b + 1)
of these servers to determine shares4, since only a maximum ofb servers can be Byzantine faulty. The shares4

returned by at least(b+1) servers should have been returned by at least one server thatis not Byzantine-faulty, and
therefore should be correct. The user must obtain at least(2b+1) responses to determine shares4, but up to(c+b)
servers can fail to return any response. Assuming clients connect to the servers over an asynchronous network so
that they are unable to detect server failures, each share must be written to at least((2b+1)+(c+b)) = (3b+c+1)
servers for reads to be successful in the presence ofb Byzantine failures andc crash failures in the system.

Thus, each share must be stored on at least(3b + c + 1) servers. Note that the given description for writes and
reads is only an approach for a possible replication-based protocol to manage the shares. We have overlooked the
need for the use of timestamps which are common to all the shares. All the shares must be written as part of a
single write operation. The approach described is just sufficient to derive a lower bound on the number of servers
required to store each share. This lower bound will change based on the assumptions on the system model and
the kind of read-write semantics to be realized. The minimumnumber of servers needed to maintain each share
is the only point in the design of the framework that is dependent on the choice of the replication protocol and its

9



underlying assumptions.

In the proposed framework, each share is assigned to(r − (l + b)) rows, and each row hasN
r

servers. Thus,
each share is stored at(r − (l + b))N

r
servers, and this must be at least(3b + c + 1). Thus,

(r − (l + b))
N

r
≥ 3b + c + 1 (1)

which gives

r ≥
N(l + b)

N − (3b + c + 1)
(2)

Inequality 2 gives the smallest number of rows possible for the framework. Thus,r can vary in the range
[

N(l+b)
N−(3b+t+1) , N

]

. Also, r must be greater than(l + b), otherwise a Byzantine fault or a leakage-only fault in each
row will give the adversary all the shares to recover the encoded data. From Inequality 2, it is obvious that the
lower bound onr is greater than(l + b).

For a givenl, b, c, andr, Inequality 1 can be rewritten as

N ≥
3b + c + 1

1 − l+b

r

(3)

to give a lower bound on the number of serversN required. The lower bound is minimized for a givenl, b, andc
whenr is at its maximum value, which isN . Substitutingr = N in Inequality 3 gives the following requirement
for N for toleratingl leakage-only faults,b Byzantine faults, andc crash faults:

N ≥ 4b + l + c + 1 (4)

Thus, as the number of rowsr is increased from(l+ b+1) to (4b+ l+ c+1), the minimum number of servers
required will decrease. Whenr = (4b + l + c + 1), the smallest number of servers needed to tolerateb Byzantine,
c crash, andl leakage-only faults will be reached. Forr > (4b + l + c + 1), there will be only one column, the
number of serversN will be the same as the number of rowsr, andN will increase withr.

7 Performance Analysis of GridSharing

7.1 Performance Metrics

This section defines some performance metrics, whose relation with the fault tolerance and security propertiesl, b,
andc, and the number of rowsr, will be described in this section.

• min(N): is the minimum number of servers required for a givenl, b, c, andr. This is given by the smallest
N satisfying Inequality 3, withN being a multiple ofr.

• #Shares: The total number of shares generated per data block (or secret). For the proposed framework,
#Shares=

(

r

l+b

)

.

• Storage Blowup Per Server: is defined as the ratio of the amount of storage space taken ateach server to
the size of the data encoded. For the proposed framework, thestorage blowup factor is

(

r−1
l+b

)

. Since we use
the XOR secret sharing scheme, the size of a share is the same as the size of the secret.

• Secret Sharing and Secret Recovery Computation Times: The secret sharing computation time is the
time taken to generate (#Shares) shares of an8 KB block of data. The secret recovery computation time is

10



the sum of two components. The first component is the time taken to determine the correct (#Shares) shares
from (2b + 1) responses for each share, whereb is the Byzantine fault tolerance threshold. We assume the
best case where there are no incorrect servers when evaluating this component. The second component is the
time taken to compute the data block once the correct (#Shares) shares have been determined. The size of
the data block and each share are8 KB. The measurements were taken on a Pentium4 3GHz computer with
256 MB RAM running Linux 2.6.9. All measurements were performedin memory and involved no disk and
network I/O.

7.2 Effect of Grid Dimension on Performance Metrics

For given security and fault tolerance thresholdsl, b, andc, the performance metrics can be traded off against each
other by varying the number of rowsr in the framework. The secret sharing and recovery computation times are
dependent on#Shares, which is dependent onr and(l + b). The smaller the number of rowsr, the fewer the
number of shares (#Shares), and the lower are the computation times during secret sharing and secret recovery.
But if r is increased from(l+b+1) to (4b+ l+c+1), from Inequality 3, the minimum number of servers required
will decrease. Thus, the number of rows affectsmin(N) and the secret sharing and recovery computation times in
opposing ways. Forl = 2, b = 2, andc = 2, the tradeoff space is given in Table 7.

r min(N) # Shares
Storage Blowup

Per Server
Computation Time

Secret Sharing Secret Recovery
5 45 5 1 333 µs 165 µs
6 30 15 5 1.103 ms 490 µs
7 21 35 15 2.668 ms 1.150 ms
8 24 70 35 5.480 ms 3.020 ms
9 18 126 70 10.31 ms 6.276 ms

Table 7: Effect of increasing number of rows r on performancemetrics when leakage-only fault threshold l
= 2, Byzantine fault threshold b = 2, and crash fault threshold c = 2

Table 7 shows that increasing the number of rows from(l + b + 1) reduces the minimum number of servers
required for that configuration while increasing the numberof shares,#Shares, needed to store each secret. The
storage capacity required at each server thus increases with r. Increasing#Shares will also increase the computa-
tion overheads at the users during the secret sharing and secret recovery processes. The practical range ofr is thus
limited by the storage blowup and the computation overheads.

When there are five rows in the framework, each row gets a distinct share. The number of shares (#Shares)
generated is minimum, and the computation times are small. But 45 servers are required for this configuration.
By having7 rows in the framework, the minimum number of servers required is lowered by more than half to21
servers. For given fault tolerance and security thresholds, having fewer servers implies that a higher percentage of
faulty servers is tolerated. Having fewer servers will alsoincrease the manageability of the system. On the other
hand, the storage blowup at each server increases by a factorof 15. Since storage cost is cheap, this is a worthwhile
tradeoff. The computation times are also at acceptable values whenr = 7. Thus, the choice of the number of rows
in the framework can be used to arrive at a suitable tradeoff point between the number of servers required, and the
storage blowup and the secret sharing and recovery computation overheads.

7.3 Relation between Fault Tolerance and Security with Performance Given N Servers

In this section, we assume that35 data storage servers are available, and investigate the relation between the fault
tolerance and security thresholdsl, b, andc and the performance metrics. We consider three cases. In each case,

11



we fix two of the thresholds at two servers, and increase the other threshold from one to five servers. Tables 8, 9,
and 10 show the three different cases. For each combination of (l, b, c), we fix the number of rows such that
the secret recovery computation time is the smallest possible for the given configuration. Since the secret recovery
computation time decreases with increasingr, for the given(l, b, c), r is set to the smallest value (r ≥ N(l+b)

N−(3b+c+1) )
such thatmin(N) is not more than35 servers.

l r min(N) # Shares
Storage Blowup

Per Server
Computation Time

Secret Sharing Secret Recovery
1 5 25 10 4 732 µs 320 µs
2 6 30 15 5 1.103 ms 490 µs
3 7 35 21 6 1.568 ms 706 µs
4 9 27 84 28 6.750 ms 4.084 ms
5 10 30 120 36 9.675 ms 6.120 ms

Table 8: Effect of increasing the leakage-only fault threshold l on performance when Byzantine fault thresh-
old b = 2, crash fault threshold c = 2, and min(N)≤ 35 servers

b r min(N) # Shares
Storage Blowup

Per Server
Computation Time

Secret Sharing Secret Recovery
1 4 24 4 1 267 µs 80 µs
2 6 30 15 5 1.103 ms 490 µs
3 8 32 56 21 4.315 ms 2.740 ms
4 11 33 462 210 38.88 ms 37.41 ms
5 16 32 11440 6435 3.104 sec 2.319 sec

Table 9: Effect of increasing the Byzantine fault thresholdb on performance when leakage-only fault thresh-
old l = 2, crash fault threshold c = 2, and min(N)≤ 35 servers

c r min(N) # Shares
Storage Blowup

Per Server
Computation Time

Secret Sharing Secret Recovery
1 6 24 15 5 1.103 ms 490 µs
2 6 30 15 5 1.103 ms 490 µs
3 6 30 15 5 1.103 ms 490 µs
4 7 28 35 15 2.668 ms 1.150 ms
5 7 28 35 15 2.668 ms 1.150 ms

Table 10: Effect of increasing the crash fault threshold c onperformance when leakage-only fault threshold
l = 2, Byzantine fault threshold b = 2, and min(N)≤ 35 servers

From Table 8, increasing the leakage-only fault thresholdl leads to a tolerable increase in the storage blowup
per server, while the secret sharing and secret recovery computation times become high forl ≥ 4 servers. The effect
of increasing the Byzantine fault thresholdb, as shown in Table 9, has a more adverse effect on the performance
metrics. The storage blowup per server and the secret sharing and recovery computation times increase rapidly
with increasingb. Thus, to achieve a very high performance with35 servers, only a relatively small number of
Byzantine failures can be tolerated.

On the other hand, the framework can accomodate more crash failures without any substantial performance
impact, as shown in Table 10. Increasing the crash fault threshold from one to five servers leaves the performance
metrics mostly unchanged. The storage blowup at each serveris tolerable and the computation throughputs are
maintained at acceptable levels.

12



The examples considered above demonstrate that the framework can tolerate crash failures with little perfor-
mance impact, leakage-only faults with medium peformance impact, and a limited number of Byzantine faults.
The maximum number of faults that can be tolerated is given byEquation 4. Thus, given35 servers, whenb = 2
andc = 2, up to24 leakage-only faults can be tolerated; whenl = 2 andc = 2, up to7 Byzantine faults can be
tolerated; and whenl = 2 andb = 2, up to24 crash faults can be tolerated. However, practical limits onthe secret
sharing and recovery computation times and the storage blowup at each server are a more severe restriction on the
actual range of faults that can be tolerated. Notice that, except for high values for the Byzantine fault threshold
b, the secret sharing and recovery computation times are muchsmaller than the figures given for verifiable secret
sharing in Table 2.

7.4 Relation between Fault Tolerance and Security with Performance Given Restriction on Secret
Recovery Computation Time

Since increasingl, and b in particular, can lead to a substantial increase in secret sharing and secret recovery
computation times, as observed in Table 8 and Table 9, we remove the requirement of having only35 storage
servers available, and instead impose the requirement thatthe secret recovery computation time for8 KB of data
must be less than1.6 ms. The secret recovery computation time is important when reads are more frequent than
writes, which is often the case. A secret recovery computation time of1.6 ms for8 KB of data is approximately
six times and eight times slower than the decryption time using the Rijndael encryption algorithm for key sizes of
32 bytes and16 bytes respectively, as was shown in Table 3.

l r min(N) # Shares
Storage Blowup

Per Server
Computation Time

Secret Sharing Secret Recovery
1 6 18 20 10 1.494 ms 660 µs
2 7 21 35 15 2.668 ms 1.150 ms
3 7 35 21 6 1.568 ms 706 µs
4 8 40 28 7 2.109 ms 928 µs
5 9 45 36 8 2.742 ms 1.196 ms

Table 11: Effect of increasing the leakage-only fault threshold l on performance when Byzantine fault
threshold b = 2, crash fault threshold c = 2, and secret recovery computation time ≤ 1.6 ms

b r min(N) # Shares
Storage Blowup

Per Server
Computation Time

Secret Sharing Secret Recovery
1 6 12 20 10 1.494 ms 415 µs
2 7 21 35 15 2.668 ms 1.150 ms
3 7 42 21 6 1.568 ms 1.00 ms
4 8 64 28 7 2.109 ms 1.60 ms
5 8 144 8 1 592 µs 576 µs

Table 12: Effect of increasing the Byzantine fault threshold b on performance when leakage-only fault
threshold l = 2, crash fault threshold c = 2, and secret recovery computation time ≤ 1.6 ms

Similar to Section 7.3, we consider three cases. In each case, we fix two of the fault thresholds at two servers,
and increase the other fault threshold from one to five servers. Tables 11, 12, and 13 show the three different cases.
For each combination of(l, b, c), we fix the number of rowsr that gives the smallestmin(N) while maintaining the
secret recovery computation time to be less than1.6 ms. Restricting the secret recovery computation time limits
the number of shares (#Shares) generated, which in turn keeps the storage blowup ateach server reasonable. In

13



c r min(N) # Shares
Storage Blowup

Per Server
Computation Time

Secret Sharing Secret Recovery
1 7 21 35 15 2.668 ms 1.150 ms
2 7 21 35 15 2.668 ms 1.150 ms
3 7 28 35 15 2.668 ms 1.150 ms
4 7 28 35 15 2.668 ms 1.150 ms
5 7 28 35 15 2.668 ms 1.150 ms

Table 13: Effect of increasing the crash fault threshold c onperformance when leakage-only fault threshold
l = 2, Byzantine fault threshold b = 2, and secret recovery computation time ≤ 1.6 ms

Table 11, the minimum number of servers required (min(N)) shows a moderate increase with increasingl. When
l = 5 servers, a total of9 (l + b + c) servers out of45 servers are faulty. That is, up to20% of the servers can
be faulty (leakage-only, Byzantine, or crash), which should be acceptable. In Table 12, the minimum number of
servers required (min(N)) increases rapidly with the Byzantine fault thresholdb. Thus, the proposed framework
is suitable for tolerating a small number of Byzantine faults.

In Table 13, the computation throughputs and the storage blowup remain the same with increasing crash fault
thresholdc for the example considered. With21 servers, up to two crash faults are tolerated, and with28 servers,
up to5 crash faults can be tolerated. Note that with5 crash faults, a total of9 servers out of28 servers can be faulty.
That is, up to32% of the servers can be faulty, which is a standard property of replica management protocols that
tolerate only Byzantine faults. While in this example most of the faults are crash faults, the number of servers
required is reasonable.

Thus, from Tables 11, 12, and 13, low secret recovery computation times can be achieved with acceptable
requirements on the number of servers and the storage blowupat each server. As observed in Section 7.3, the
requirement on the number of servers for tolerating crash and leakage-only faults is acceptable, while practical
considerations will restrict the number of Byzantine faults that can be tolerated. Note that, in all the analyses, the
number of rows in the framework was manipulated to arrive at the optimum configuration.

8 Discussion

This paper presents a novel approach for realizing a secure and fault tolerant data storage service in collaborative
work environments. Key highlights of our work are:

• The use of perfect secret sharing for providing confidentiality of stored data eliminates the need for crypto-
graphic keys used for encryption purposes, thus avoiding key management issues.

• Verifiable secret sharing schemes are typically used with perfect secret sharing schemes to achieve Byzantine
fault tolerance. We show that verifiable secret sharing schemes incur substantial computation overheads, and
are over3000 times slower than the Rijndael encryption algorithm.

• We use XOR secret sharing for confidentiality, and manage each share using replication-based protocols for
Byzantine and crash fault tolerance. The computation overheads are reduced drastically when compared to
verifiable secret sharing schemes, but additional servers and storage capacities at each server are required.
An example where the secret recovery computation time was only up to six to eight times slower than the
Rijndael decryption algorithm was given.

• We present an architectural framework, calledGridSharing, whose dimension can be varied to tradeoff
between the number of servers required, and the storage blowup and secret sharing and recovery computation

14



times. This property was shown to be valuable in arriving at optimum configurations for different fault
thresholds.

• We introduce a new fault model consisting of crash, Byzantine, andleakage-only faults for our analyses. We
believe this new fault model will prove to be useful for analyzing works that are common to the areas of fault
tolerance and security.

• For secret recovery computation times that are six to eight times slower than Rijndael decryption, we show
that our proposed framework provides good fault tolerance to leakage-only and crash faults with acceptable
overheads. However, in practice, resource limitations place a restriction on the number of Byzantine server
failures that can be tolerated.

An important characteristic of theGridSharing framework is the tradeoff between the number of servers re-
quired and the storage blowup at each server. This tradeoff is worth considering because storage space is cheap,
while more servers could result in manageability problems.In [24], the fact that storage space is cheap is exploited
to keep data confidential. Encrypted data is encoded into shares using Shamir’s scheme and embedded in a huge
file. An adversary must obtain at least a large chunk of the fileto obtain enough shares, and the transfer of such
huge amounts of data over the network will result in the intrusion being detected. Likewise, we favor increasing
the storage blowup at each server (to acceptable levels) while decreasing the number of required servers, as this
will lead to easier intrusion detection and system administration.

Due to space considerations, the communication overheads during reads and writes, which will increase with
the storage blowup at each server, have been omitted in our analyses. However, we note that a number of works
have considered the problem of reducing communication overheads. Quorum systems [25] are replication-based
techniques that can be used to balance the read and write communication overheads relative to each other by
setting the quorum sizes appropriately. [26] shows that theuse of cryptographic hashes can significantly reduce
the communication overheads. [27] investigates the tradeoff between computation and communication overheads
for several lossless compression algorithms. The use of cryptographic hashes and compression algorithms reduce
communication overheads while increasing the computationoverheads, which reinforces the need for reducing the
computation overheads during the secret sharing and recovery processes.

References

[1] A. Shamir, “How to share a secret,”Communications of the ACM, vol. 22, no. 11, pp. 612–613, 1979.

[2] M. Herlihy and J. D. Tygar, “How to make replicated data secure,” inCrypto, 1987.

[3] A. Adya, R. P. Wattenhofer, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell,
J. R. Lorch, and M. Theimer, “Farsite: Federated, available, and reliable storage for an incompletely trusted
environment,” inProceedings of the 5th Symposium on Operating Systems Design and Implementation, 2002.

[4] “Mojonation.” http://www.mojonation.net.

[5] Y. Chen, J. Edler, A. Goldberg, A. Gottlieb, S. Sobti, andP. Yianilos, “A prototype implementation of archival
intermemory,” inProceedings of the 4th ACM International Conference on Digital Libraries, 1999.

[6] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weather-
spoon, W. Weimer, C. Wells, and B. Zhao, “Oceanstore: An architecture for global-scale persistent storage,”
in Proceedings of the 9th ASPLOS, 2000.

[7] M. Waldman, A. D. Rubin, and L. F. Cranor, “Publius: A robust, tamper-evident, censorship-resistant web
publishing system,” inProceedings of the 9th Usenix Security Symposium, 2000.

15



[8] R. J. Anderson, “The eternity service,” inProc. 1st Intl. Conf. on Theory and Application of Cryptography,
1996.

[9] A. Iyengar, R. Cahn, C. Jutla, and J. Garay, “Design and implementation of a secure distributed data reposi-
tory,” in Proceedings of the 14th IFIP International Information Security Conference, 1998.

[10] “Pasis.” http://www.pdl.cmu.edu/Pasis.

[11] R. Dingledine, M. J. Freedman, and D. Molnar, “The free haven project: Distributed anonymous storage
service,” inProc. of the International Workshop on Design Issues in Anonymity and Unobservability, 2000.

[12] Y. Deswarte, L. Blain, and J. C. Fabre, “Intrusion tolerance in distributed computing systems,” inProceedings
of the 14th IEEE Symposium on Security and Privacy, 1991.

[13] G. R. Blakley, “Safeguarding cryptographic keys,” inProceedings of the National Computer Conference,
1979.

[14] M. Rabin, “Efficient dispersal of information for security, load balancing, and fault tolerance,”Journal of the
ACM, vol. 38, no. 2, pp. 335–348, 1989.

[15] M. Naor and A. Wool, “Access control and signatures via quorum secret sharing,”IEEE Transactions on
Parallel and Distributed Systems, vol. 9, no. 9, pp. 909–922, 1998.

[16] S. Lakshmanan, M. Ahamad, and H. Venkateswaran, “Responsive security for stored data,”IEEE Transac-
tions on Parallel and Distributed Systems, vol. 14, no. 9, pp. 818–828, 2003.

[17] T. M. Wong,Decentralized recovery for survivable storage systems. PhD thesis, Carnegie Mellon University,
2004.

[18] M. A. Marsh and F. B. Schneider, “Codex: A robust and secure secret distribution system,”IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 34–47, 2004.

[19] K. Kulesza and Z. Kotulski, “On secret sharing schemes with extended capabilities,” inProceedings of the
Regional Conference on Military Communication and Information Systems, 2002.

[20] M. Ito, A. Saito, and T. Nishizeki, “Secret sharing scheme realizing general access structure,” inProceedings
of the IEEE Global Communication Conference, 1987.

[21] “The miracl software library.” http://indigo.ie/m̃scott/.

[22] H. Krawczyk, “Distributed fingerprints and secure information dispersal,” inProceedings of the 12th ACM
Symposium on Principles of Distributed Computing, 1993.

[23] P. Feldman, “A practical scheme for non-interactive verifiable secret sharing,” inProceedings of the 28th

IEEE Symposium on Foundations of Computer Science, 1987.

[24] D. Dagon, W. Lee, and R. Lipton, “Protecting secret datafrom insider attacks,” inProceedings of the 9th

International Conference on Financial Cryptography and Data Security, 2005.

[25] D. K. Gifford, “Weighted voting for replicated data,” in Proc. of the 7th Symp. on Operating Systems Princi-
ples, 1979.

[26] D. Tulone, “Enhancing efficiency of Byzantine-tolerant coordination protocols via hash functions,” inPro-
ceedings of the 10th Euro-Par conference, 2004.

[27] Y. Wiseman, K. Schwan, and P. Widener, “Efficient end to end data exchange using configurable compres-
sion,” in Proceedings of the 24th International Conference on Distributed Computing Systems, 2004.

16


