An Approach for Fault Tolerant and Secure Data Storage in Colaborative Work
Environments*

Arun Subbiah and Douglas M. Blough
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332 USA
{arun,dblough@ece.gatech.edu

Technical Report GIT-CERCS-05-13
April 2005

Abstract

We describe a novel approach for building a secure and faleltant data storage service in collaborative
work environments. In such environments, sensitive datst in& accessible only to a select group of people,
whose membership may change over time. Key managemensiasee recognized problem in such envi-
ronments. We eliminate this problem for confidential andusedata storage by using perfect secret sharing
techniques for storing data. Perfect secret sharing schéma found little use in managing generic data be-
cause of the high computation overheads incurred by egistitiemes. Our proposed approach uses a novel
combination of XOR secret sharing and replication mechmasjsvhich drastically reduce the computation over-
heads and achieve speeds comparable to standard encrygiiemes. The combination of secret sharing and
replication manifests itself as an architectural framdwarich has the attractive property that its dimension
can be varied to tradeoff amongst different performanceiosetWe evaluate the properties and performance
of the proposed framework to show that the combination digoésecret sharing and replication can be used to
build efficient fault-tolerant and secure distributed dettaage systems for collaborative work environments.

Keywords: Distributed data storage, secret sharing, replicationfidentiality, Byzantine fault tolerance, col-
laborative environments

1 Introduction

The storage of sensitive information has been studied sy in various contexts ranging from cryptographic
keys [1] to generic data [2]. Computing power, network baiatly and secondary storage capacities have mean-
while increased dramatically, and seem to show no signs ateaient. While this trend has certainly helped in
providing more secure storage services and higher cagmcitihas also empowered attackers in compromising
storage servers and gaining access to critical data. Alsaalthis trend, the scope of “sensitive” information
has broadened from personal information such as cryptbgrdeys and passwords, to generic data that must be
available to only a select group of people. This paper dessra novel fault-tolerant and secure distributed storage
system designed for use in collaborative work environmentsere stored data is shared by a group of people
whose membership may change over time.

The traditional approach for storing data securely andipgliis to encrypt the data for confidentiality, and
store the encrypted data using replication-based teclsifpr fault tolerance. This approach has the benefits of

*This research was supported by the National Science Faondatder Grant CCR-0208655.

being computationally and storage efficient. However, wtlata must be stored for extended periods of time,

it can be expected that there will be changes in the list ofsuaathorized to read or write the encrypted data.

Changes in the access list will require re-encrypting tbeest data with a new cryptographic key, which may be

cumbersome. For fine grained access list management, eadr flocument stored at the data storage service
would require a unique key. The number of keys could then ineclarge, and the keys would then have to be

stored at the data storage service itself for easy accessthgrized users. Obviously, these keys must be stored
at the storage service in a secure and fault tolerant manitiesw using additional keys.

We solve these problems by using a combination of replinai@sed schemes and perfect secret sharing
techniques for storing data. Perfect secret sharing schemeode data intehares such that only certain valid
combinations of shares can be used to reconstruct the ethdadie, while invalid combinations of shares give no
information on the encoded data. By storing these sharaffexemt servers, the encoded data is kept confidential
as long as not enough servers are compromised. Confidsnisatichieved without encryption, thus avoiding the
need for the storage and management of cryptographic kegr$edP secret sharing schemes have the additional
property that the shares can be changed, or “renewed”jldistely such that the encoded data still remains the
same. This process of share renewal, when performed ofiarprovide strong data confidentiality.

On the other hand, unlike private-key encryption schemesstiperfect secret sharing schemes are compu-
tationally expensive. Verifiable secret sharing schemesygically used with perfect secret sharing schemes to
detect incorrect shares that may be returned by faulty opcomised servers. Such techniques further increase
the computation time during the encoding and decoding &.ddfe solve these problems by 1) using XOR se-
cret sharing for fast computations, and 2) using replicaiased schemes to detect incorrect shares that may be
returned by faulty or malicious servers. This combinatidisexret sharing and replication manifests itself as an
architectural framework, where servers are arranged irfotime of a rectangle or a grid. The proposed architec-
tural framework, which we calBridSharing, has the useful property that its dimensions can be varitdde off
several performance metrics.

The proposed approach is also useful for storing sensitisleival data. Encryption techniques may not be
suitable for such purposes, as in the long run, encryptigorithms can be broken, or increased computing re-
sources would require increasing the sizes of the keys. dfipmposed framework, long-term confidentiality can
be provided by performing share renewal often. Another 8eak of encryption is the assumption that the data
to be encrypted is random in nature, while that is often netcdise. Encrypted data could be subject to cryptanal-
ysis, and it may be possible for an adversary to obtain sofoeniation on the encrypted data. In our proposed
framework, we assume that not more than a threshold servemsompromised (between two consecutive share
renewals), and use perfect secret sharing schemes, suoh 4©R secret sharing scheme, which are information
theoretically secure. Thus, even if an adversary obtaihates from a threshold servers, he still cannot obtain any
information on the encoded data.

Our contributions are as follows: We describe a novel apgrdar building a secure and fault tolerant data
storage service in collaborative work environments. Keyaggment issues are a well-known problem in such
environments, where data may be shared by a group of peoplsawhembership may change over time. We elim-
inate this problem for confidential and secure data storggesing perfect secret sharing techniques for storing
data. Perfect secret sharing schemes have found littlennsanaging generic data because of the high computation
overheads such schemes incur especially when supplemeittechechanisms to achieve Byzantine fault toler-
ance. Our proposed approach uses a novel combination of X€Rtsharing and replication mechanisms, which
drastically reduce the computation overheads and achpmexls comparable to standard encryption schemes. The
combination of secret sharing and replication manifestdfiis an architectural framework, whose dimension can
be varied to tradeoff amongst different performance metrit/e evaluate the properties and performance of the
proposed framework to show that the combination of perfectes sharing and replication can be used to build
efficient fault-tolerant and secure distributed data gfersystems for collaborative work environments.

2 Related Work

Several works [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] have emergedtigcinat consider the problem of providing secure

distributed data storage services. The confidentialityhefdtored data is provided either by encrypting the data
with a key and storing the key also at the store using seceetrgh[1, 13], or secret sharing the data itself, or a

combination of both.

In this paper, we use secret sharing schemes to provide dafiglentiality. Most works use imperfect secret
sharing schemes, such as Rabin’s IDA [14] algorithm, whieeekhowledge of fewer than the threshold number
of shares can reveal some information of the encoded datah &uding algorithms are thus not information-
theoretically secure, but allow savings in storage spacgern®nough time, an adversary may compromise enough
servers to learn the encoded data. Thus, to provide lomg-¢t@nfidentiality, the secret sharing scheme should
allow share renewal, where the shares are changed in audistli fashion such that the encoded secret is not
recovered in the process and is unchanged. To our knowledgshare renewal scheme for imperfect secret
sharing has been developed to date. Perfect secret shahiegmss, on the other hand, allow share renewal.
Perfect secret sharing schemes are information-theaetiore, meaning the leakage of an insufficient number of
shares to an adversary does not reveal any information ceniteded data.

Several works have combined replication and perfect ssbiing [2, 15, 16]. [2] presents a scheme where
data is encrypted using a key, and both are stored at thegstsgvers. The data is stored in replicated form in
a quorum, while the key is stored using secret sharing. [bBFiclers a quorum system where the shares of a
secret are stored at all the servers, and a quorum of sha&esatled to recover the secret. The secrets stored are
access rights, and quorum properties are used to grantakeeccess rights. Thus, these two works consider the
use of perfect secret sharing for some special types of datanat for generic data. Performance during reads
and writes is not addressed. [16] considers perfect seltaging schemes for generic data. They use a verifiable
secret sharing scheme along with replication for high atslity. Their work primarly addresses the overheads
associated with data dissemination, but does not addregetformance issues with using verifiable secret sharing
schemes and perfect secret sharing schemes. [17] usestpadect sharing along with verifiable secret sharing
for storing archival data. Extensive performance measengsof such schemes are given, but the problem of high
computation overheads is not addressed.

CODEX [18] is a data storage system that avoids key manadeisgres by encrypting secrets using the
public key of the data storage service. The private key isesehared at the data storage servers so that up to
some threshold malicious servers can collude and still eatlide to recover the service’s private key to decrypt
the data. They report their computation overheads to besimtimdreds of milliseconds fae8 byte data secrets,
which is over a hundred times slower than our measuremertteedRijndael encryption algorithm. Though we
have not implemented their approach and compared thewonpeaince against ours, we note that due to their use of
expensive cryptographic operations, their computatitenizies are expected to be much higher than our approach.

XOR secret sharing has been considered in [19]. They showdiftevent capabilities such as share renewal
and share recovery can be implemented with XOR secret ghakior this, existence of a trusted device, called
the Accumulator, is assumed. They further assume that during secret shemthgecret recovery, no server returns
erroneous responses. Performance benefits associateithevithe of XOR secret sharing are not discussed.

3 Background

3.1 Secret Sharing Schemes

Secret sharing schemes are techniques wheeeret is encoded into several fragments, calsbdres, such that
certain combinations of shares can together reveal thededceecret. Iperfect secret sharing schemes, invalid
or unauthorized combinations of shares give no informatiorthe encoded secret. Thus, perfect secret sharing

3

schemes are information-theoretic secure. Perfect sslgaging schemes also allow share renewal, which is the
process of distributively changing the shares such thatticeded secret is the same. Share renewal must be done
often to provide strong data confidentiality.

In perfectthreshold secret sharing schemes, a secret is encoded stiares such that amyout of theq shares
can be used to recover the encoded secret, whileg(/anry 1) shares give no information on the encoded secret.
Such schemes are also callgd ¢)-threshold schemes. Shamir's scheme [1] is an example(bf@-threshold
perfect secret sharing scheme, whier€ q.

In the next subsection, we describe Ito, Saito, and Niskigzekare assignment scheme [20], which realizes
any access structure usinga q)-threshold secret sharing scheme.

3.2 Ito, Saito, and Nishizeki’'s Share Assignment Scheme

We describe Ito, Saito, and Nishizeki's share assignmdrerae [20] for a threshold access structure. Consider a
set ofr participants{ P, , P, ..., P, } such that anym + 1) participants can pool their shares to recover the encoded
secret. For a secret sharing scheme realizing this acaessuse, first list the seB consisting of all possible
combinations ofn participants. ThusB = {By, By, ..., By}, whereq= ().

Next, encode the secret usind@ ¢)-threshold secret sharing scheme, where (). Let the shares thus
generated be denoted by= {s1, s2,...,54}, where g = (). The set of shares assigned to participBris given
by the functiong(i) = {sj, P, ¢ Bj,1 < j < ¢}. Thus, each participant receivé‘%l) shares, and each share is
stored afr — m) participants.

For example, consider a set of four participants such théest three participants must pool their shares
to find the encoded secret. Then= 4, m = 2, and the setB = {(P,), (P, Ps), (P, Py), (P, Ps3),
(P2, Py), (Ps, Py)}. Next, generaté shares of the secret such that all six of them are needed tuledbe
secret. Denote the six sharesfy, so, s3, S4, S5, S }-

From the share assignment functi@n

ParticipantP; gets share§sy, ss, sg),
ParticipantP, gets sharegs,, s3, sg),
ParticipantPs gets sharegsy, s3, s5),
ParticipantP, gets share§sy, s2, $4).

S
S

Thus, any two participants can pool their shares to find olyt five of the six shares. Without the knowledge of
the sixth share, the encoded secret cannot be found out.hey participants can pool their shares to find out all
six shares needed to recover the encoded secret.

4 Computation Overhead of Perfect Secret Sharing Schemes

In this section, we show the high computation overhead ofesail known secret sharing schemes, which is the
main reason why such schemes are not widely used in secura@htblerant distributed data storage systems.
We contrast the computation overheads with that of the B§hdAES) symmetric-key encryption algorithm to
illustrate this point. We then show that XOR secret sharimglgined with replication-and-voting mechanisms has
a computational overhead similar to that of Rijndael. Allfpemance measurements reported in this paper were
done on an Intel Pentium4 3GHz processor vt MB RAM running Linux 2.6.9. The MIRACL [21] library
was used to implement the cryptographic algorithms.

Shamir’s scheme [1] is an example of/a q)-threshold perfect secret sharing scheme, whereq. Table 1
lists the time taken to compute shares (sharing), and the taken to compute the secret given enough shares

4

Prime (k,q) = (3,5) (k,q) = (6,10)

Length Sharing | Recovery|| Sharing | Recovery
160 bits || 4.956 ms | 826 us 14.87 ms | 1.446 ms
512 bits 6.192ms | 1.290 ms || 20.00 ms | 2.064 ms
1024 bits || 10.53 ms | 2.145 ms || 34.65 ms | 3.575 ms

Table 1: Computation time during secret sharing and secret ecovery for an 8 KB block of data using
Shamir’s secret sharing scheme

(recovery), for ar8 KB block of data using Shamir's scheme, for a selectior(/ofy) values. Secret sharing
and recovery are done during writes and reads, respectiaety their overheads are therefore important. For
Shamir's scheme, since the computations are done moduliona pr the size of this modulus is also a factor in
the throughput measurements.

Shamir's scheme alone cannot be used to detect incorre@ssieturned by malicious servers during reads.
One method of detecting incorrect shares returned by roakcservers is distributed fingerprints [22], where the
hash of the shares are stored as a hash vector at all servevgevet, share renewal cannot be used with this
approach because it is not possible to update the hash kaiog a distributed renewal of the shares. Another
technique to safeguard against malicious servers is Jgsgfisecret sharing. In such schemes, some common
data for all the shares is computed and stored at all the rsenBauring reads, the correct common data is first
determined, and then each share is checked against this @momiata to detect incorrect shares. With verifiable
secret sharing schemes, it is possible to perform a distiibshare renewal of the shares and the additional data
required for verifiability. A widely used method for verifigbsecret sharing is Feldman’s scheme [23]. Table 2
gives the computation times during secret sharing and serevery of ar8 KB block of data when Feldman’s
scheme is used with Shamir’'s scheme.

Prime *,q) = (3,5) k. q) = (6,10)
Length Sharing| Recovery|| Sharing| Recovery
160 bits 2.461s | 2.616s 4.956s | T7.228s
512 bits 1.037s | 1.097s 2.090s | 2.795s
1024 bits || 728 ms | 747.5ms || 1.464s | 1.809s

Table 2: Computation times for verifiable secret sharing andverifiable secret recovery for an 8 KB block of
data using a combination of Shamir's and Feldman’s secret siring schemes. Computations in Feldman’s
scheme were implemented modulo a prime of length 1025 bits.

For comparison purposes, the throughputs of the AES Rijrsyamemetric-key encryption algorithm are given
in Table 3. The implementation of Rijndael in the MIRACL ldvy [21] was used for the measurements.

| Key length| Encryption | Decryption |

16 bytes 205 us 205 us
24 bytes 230 us 241 us
32 bytes 282 us 271 us

Table 3: Time taken to encrypt and decrypt an 8 KB block of datausing the Rijndael (AES) encryption
scheme in CBC mode.

From Tables 1-3, it is clear that the computation times ofm8hs scheme and Feldman’s scheme are far
higher than those of symmetric-key encryption and, in fédgs, performance is well below what is acceptable for
modern data storage systems. The secret recovery congoutiatie of verifiable secret sharing schemes are at least
3000 times slower than the Rijndael decryption times. The aboadyaes also indicate, in part, why perfect secret
sharing techniques have not been adopted for generic ddséagoHowever, as mentioned previously, perfect secret
sharing has several benefits as compared to encryption-bed®iques: it provides information-theoretic secrecy,
the shares can be renewed for strong data confidentialitltrere are no cryptographic keys to be secured and
managed. To reduce the computation overheads incurredgdpeirfect secret sharing, we employ the following
two mechanisms:

Mechanism 1: Use a (q, q) perfect secret sharing schem#&/henk = ¢, i.e., all the shares are needed to recover
the secret, then a simple bit-wise XOR secret sharing casde uf each data bit is thought of as a separate secret,
then each share is a single bit and XOR of tghares (og bits) gives the encoded secret bit. In practice, XOR
secret sharing can be implemented with word-wide operationefficiency. Table 4 lists the computation times
during secret sharing and secret recovery for a selectidn, @ values for XOR secret sharing. Note that XOR
secret sharing is also a perfect secret sharing scheme.nlheanstraint compared to the genef&l ¢)-threshold
scheme withk < ¢ is that allg shares must be recovered to reconstruct the secret. Cauinpitinethe computation

| (7,q9) | Secretsharind Secret recovery
(5,5) 333 us 35 s
(10, 10) 732 s 60 s
(20,20) | 1.494ms 140 ps

Table 4. Computation times for secret sharing and secret reavery of an 8 KB block using the XOR secret
sharing scheme

times using Shamir's scheme (Table 1), the computationstinseng XOR secret sharing are much lower.

Mechanism 2: Use replication-and-voting to determine incoect shares during reads: To detect incorrect
shares that may be returned by malicious servers during resepropose that each share is replicated at enough
servers such that if at least a threshold of servers retgrsame share during a read, then that share is correct and
can be used for the secret recovery computation. This isrélgiitibnal technique used for managing replicated
data, which we apply for each share. If the number of malg®gervers is denoted bythen for each share at least
(2b+ 1) responses must be received. The value returned by afleast) servers is the correct value of the share
being read.

| b | Computation Time]

1 13.75 us
2 25 us
3 40 ps
4 50 us
5 65 us

Table 5: Computation times for voting out of 2b+1 responsesa determine a share of size 8 KB. b is the max-
imum number of malicious servers that can return incorrect values for the requested share. Measurements
reflect the best case where there are no incorrect responses.

Table 5 gives the computation times for determining eachesinam (2b + 1) responses, whetes the number
of possibly malicious servers. Note that the numbers arengior each share. Hence, the computation time during

6

secret recovery must now include the product of the timerta@edetermine each share frai2 + 1) responses
and the number of shares. The secret sharing computatienitiiremain unchanged as no additional shares are
generated. The secret sharing and recovery computati@s fion XOR secret sharing along with voting o= 3

are shown in Table 6. Compared with the computation timesedfiable secret sharing schemes (Table 2), the

| (g,q9) | Secretsharind Secret recovery
(5,5) 333 us 235 1S
(10, 10) 732 s 460 s
(20, 20) 1.494 ms 940 us

Table 6: Computation times for secret sharing and secret remvery of an 8 KB block using the XOR se-
cret sharing scheme along with voting to determine incorrecshares that may be returned by up to b = 3
malicious servers during reads.

computation times of XOR secret sharing with voting are mioger, and are in the same order of magnitude as
those of the Rijndael encryption algorithm (Table 3).

Summarizing, perfect secret sharing schemes can be ustdifistolerant and secure distributed data storage
by combining them with verifiable secret sharing techniquésing the computation latency of the Rijndael en-
cryption algorithm as the benchmark, we have shown thatkmelvn verifiable secret sharing techniques such as
the combination of Feldman’s scheme with Shamir’s scheradar slow to be used for large volumes of data.
Verifiable secret sharing techniques can be avoided by usplgation-and-voting mechanisms. This, along with
the use of XOR secret sharing, drastically lowers the coatfmut times, making them comparable to the Rijndael
encryption algorithm execution times. In the rest of thegsape describe in detail how XOR secret sharing with
replication-and-voting mechanisms can be combined, ambehefits of this approach.

5 Fault and Adversary Model

Since our data storage service must offer availabilityggrity, and confidentiality guarantees for the stored data,
we identify the following three types of server faults:

e Crash: A server is said to berashed if it stops performing all computations and neither sendsraceives
messages on the network.

e Byzantine: A Byzantine-faulty server can deviate arbitrarily fromsfgecified protocol. A Byzantine faulty
server can also reveal the shares stored locally and ithaitstate to an adversary.

e Leakage-only: A server is said to exhibit a leakage-only fault if it can ralviés shares and state to an
adversary, but executes its specified protocol faithfully.

Crash and Byzantine faults are primarily related to protetsavior, and hence used widely in fault tolerant
distributed algorithms. Works in computer security indt@@ew faults as due to an adversary, and classify the
adversary’s intent. Avassive adversary compromises servers only to learn the localledtdata or the servers’
states. Aractive adversary, on the other hand, takes full control of a compedhserver. An active adversary can
learn the compromised server’s data and its state, and safoate the compromised server to behave maliciously.
The proposed fault model merges these two traditional faotiels. Crash faults are primarily for fault tolerance.
Byzantine faults take into account compromises due to dweaativersary. The leakage-only faults are due to a
passive adversary. A faulty server’'s behavior can beloranlp one of the three fault types. In particular, a server
cannot simultaneously crash and be leakage-only faulty.

7

The reason for including a leakage-only fault (or the redsomcluding passive and active adversary models)
is because an adversary may be interested in learning ttrezlstata and avoid generating suspicious activity that
might allow the security breach to be detected. Byzantm#tftolerant algorithms are usually costly, and so it
should be desirable to treat this fault separately from éa&dge-only fault. For example, in the context of the
proposed framework, the secret sharing scheme could bgnéeissuch that a substantial number of shares are
needed to recover the encoded data, but the Byzantinettdeiint read and write protocols could use a small
Byzantine fault threshold to reduce overheads.

The proposed fault model is also useful in analyzing worksamputer security. Works in computer security
almost always do not consider crash faults, thereby ovkirlgosome fault tolerance properties provided naturally
by many algorithms. For example, in(&, ¢q) access structure whekeout of ¢ servers must be queried to obtain
a threshold shares for secret recovery, upgte- k) servers can crash, and up(fo— 1) servers can be leakage-
only faulty. The crash fault tolerance is usually overlabkehen specifying the confidentiality aspects of the
access structure. To achieve Byzantine fault tolerancengstdhe same servers, the crash and leakage-only
fault tolerances will in general have to be lowered. In gjeraystems where data is encrypted and then replicated
at multiple sites, all the sites can be leakage-only faal$ythe confidentiality of the encrypted data rests on the
secure maintenance of the decryption key, which could bedtisewhere. The proposed fault model can thus be
used as a common ground for reasoning about works in faegltaiote and security, and in recognizing the fault
tolerance and security properties of works exclusivelyitinez of these two areas.

We use the threshold fault model for each of the three typésulis. We assume that not more thaservers
can crash, not more thdnservers can be Byzantine-faulty, and not more thaervers can exhibit leakage-only
faults.

6 Combining Secret Sharing and Replication: The GridSharirg Framework

Our approach for a fault tolerant and secure data storageses to use perfect threshold secret sharing for data
confidentiality, and to use replication-based mechanismsanage each share for crash and Byzantine fault toler-
ance. This section describes the architectural frameveatled GridSharing, that combines these two principles.

The GridSharing framework consists olV servers, where not more tharservers can crash, not more than
servers can be Byzantine faulty, and not more thaarvers can exhibit leakage-only faults. TNeservers are
arranged in the form of a logical rectangular grid withows and% columns, where for simplicity it is assumed
that IV is a multiple ofr. The arrangement is depicted in Figure 1.

Servers in the same row store replicas of the same shares, fOferance to crash and Byzantine failures is
achieved. Data confidentiality is achieved using secratrgipaThe secret sharing is done across rows. Thus, as
per the terminology used in Section 3.2, theows are the- participants amongst which shares are distributed.
Since up td servers can be leakage-only faulty (reveal their sharens tlgersary) and up toByzantine-faulty
servers can also do the same, shares from p-tob) rows can be disclosed to an adversary. From Section 3.2,

an ((l_:b), (l_:b))—threshold perfect secret sharing scheme can be used tategle+ b) faulty servers in- rows.

Figure 1 gives an example whefé = 20 servers are arranged in a rectangular grid with 4 rows. If it is
necessary to tolerate= 1 Byzantine fault and = 1 leakage-only fault, then é(;*), (3)) = (6,6) XOR secret
sharing scheme will have to be used. Assume a secref fileencoded into six file shargss, so, s3, s4, S5, S6)
such thatS = s; @ sy P s3 P s4 B s5 P sg. Thatis, each bit in the fil& is the XOR of the corresponding bits in
the filessy, s9, s3, 84, S5, S¢. Then according to the share assignment fungjigiven in Section 3.2,

Servers in rom gets sharessy, ss, sg),

Servers in ron2 gets sharesss, s3, s¢),
Servers in rom3 gets sharess, ss, s5),

8

L 4

Replication

F 3

Rowl [=2 2 = .
Bus 85, 85| [B42 85, 85| By. S5 85| [Byn 8, S5] [By, 8, 8
Row 2 “; IQ Q g. |Q
Secret N N A N NN NN N L,
Sharing - - : - - =
Row3 S p={ =i = 1=
8128385 818 85] 81,8 85| [815 53 85 |84, B3, 8]
Rowr=4 [Py
M S8 Sy S8 8] S Sasy] (88 5y (88 8y

% = 5 columns

L J

F 3

Figure 1: The GridSharing framework: N servers are arranged in a logical grid having r rows. The secret
sharing is done across rows, and shares are replicated alomgws. The figure shows the setup for N = 20
servers, leakage-only fault threshold | = 1, Byzantine fadlthreshold b = 1, and crash fault threshold ¢ = 6.
Note that each server holds 3 shares.

Servers in rowt gets sharessy, s, s4).

Note that shares are replicated along rows. The replic&idone to achieve Byzantine and crash fault tolerance.
When files are read and written, the shares are read andmuigteg replication-based protocols. For the purposes
of this analysis, we assume the following simple replicaiwotocol. To write a secret fil8, the user generates
(lj;b) files (shares) such that their bitwise-XOR gives the sedeetSti For a given grid configuration, the share
assignment for each server is given by the share assignmmectidn g and the fact that servers in the same row
store the same shares. The user writes to each server ge@gsihares. Thus, in the example depicted in Figure 1,
the user will write to each server in roisthe share$sy, s5, s¢), to each server in ro@ the sharegss, s3, s¢), and

SO on.

When file S is to be read at a later time, the same user or a different uieregd to only contact some set of
servers to read all the shares. Consider how shaigread in our example. The shargis stored at rows and
4, and since each row has five servers, the sharestored at ten servers. The user needs to contact@hly 1)
of these servers to determine shagesince only a maximum df servers can be Byzantine faulty. The shafe
returned by at leagb + 1) servers should have been returned by at least one serveés ttwatByzantine-faulty, and
therefore should be correct. The user must obtain at (@ast 1) responses to determine shagebut up to(c+b)
servers can fail to return any response. Assuming cliermaext to the servers over an asynchronous network so
that they are unable to detect server failures, each shasttrawritten to at leag(2b+ 1)+ (c+b)) = (3b+c+1)
servers for reads to be successful in the presena@giantine failures and crash failures in the system.

Thus, each share must be stored on at I&#st- ¢ + 1) servers. Note that the given description for writes and
reads is only an approach for a possible replication-basetgnl to manage the shares. We have overlooked the
need for the use of timestamps which are common to all theeshakll the shares must be written as part of a
single write operation. The approach described is justcsefii to derive a lower bound on the number of servers
required to store each share. This lower bound will changedan the assumptions on the system model and
the kind of read-write semantics to be realized. The mininmumber of servers needed to maintain each share
is the only point in the design of the framework that is degrebn the choice of the replication protocol and its

underlying assumptions.

In the proposed framework, each share is assignéd to(l + b)) rows, and each row ha¥ servers. Thus,
each share is stored @t — (I + b))% servers, and this must be at le@%i + ¢ + 1). Thus,

(r—(l+b))g23b+c+1 (1)

which gives
N(l+b)
> 2
"EN_—(Bbtctl) @

Inequality 2 gives the smallest number of rows possible lier framework. Thusy can vary in the range
[%, N} . Also, » must be greater thafi + b), otherwise a Byzantine fault or a leakage-only fault in each
row will give the adversary all the shares to recover the dadadata. From Inequality 2, it is obvious that the

lower bound onr is greater thartl + b).
For a given, b, ¢, andr, Inequality 1 can be rewritten as

=T
17‘

to give a lower bound on the number of servarsequired. The lower bound is minimized for a given, andc
whenr is at its maximum value, which i&. Substitutingr = N in Inequality 3 gives the following requirement
for N for toleratingl leakage-only faults) Byzantine faults, and crash faults:

N>db+l4c+1 (4)

Thus, as the number of rowss increased frontl 4+ b+ 1) to (4b+ [+ ¢+ 1), the minimum number of servers
required will decrease. When= (4b + [+ ¢ + 1), the smallest number of servers needed to tolér@gzantine,
c crash, and leakage-only faults will be reached. For> (4b + [+ ¢ + 1), there will be only one column, the
number of server®V will be the same as the number of rowsand N will increase withr-.

7 Performance Analysis of GridSharing

7.1 Performance Metrics

This section defines some performance metrics, whoseaehaith the fault tolerance and security propertigly
andc, and the number of rows will be described in this section.

e min(N): is the minimum number of servers required for a giveh ¢, andr. This is given by the smallest
N satisfying Inequality 3, withV being a multiple of-.

e #Shares The total number of shares generated per data block (oet3edfor the proposed framework,
#Shares= (,1,).

e Storage Blowup Per Server is defined as the ratio of the amount of storage space takesmchtserver to
the size of the data encoded. For the proposed frameworkidhage blowup factor i@jr;). Since we use
the XOR secret sharing scheme, the size of a share is the saiime size of the secret.

e Secret Sharing and Secret Recovery Computation TimesThe secret sharing computation time is the
time taken to generateShares) shares of @KB block of data. The secret recovery computation time is

10

the sum of two components. The first component is the timenttkdetermine the correct{Shares) shares
from (2b + 1) responses for each share, wheiie the Byzantine fault tolerance threshold. We assume the
best case where there are no incorrect servers when ewgldiait component. The second component is the
time taken to compute the data block once the coreg&Hares) shares have been determined. The size of
the data block and each share ai€B. The measurements were taken on a Pentium4 3GHz compiiter w
256 MB RAM running Linux 2.6.9. All measurements were perforniednemory and involved no disk and
network 1/0.

7.2 Effect of Grid Dimension on Performance Metrics

For given security and fault tolerance threshdldg andc, the performance metrics can be traded off against each
other by varying the number of rowsin the framework. The secret sharing and recovery comuuiaimes are
dependent os£Shares, which is dependent erand (I + b). The smaller the number of rows the fewer the
number of shares#Shares), and the lower are the computation times duringtssbaring and secret recovery.
Butif r is increased fronl +b+ 1) to (4b+1+ c+ 1), from Inequality 3, the minimum number of servers required
will decrease. Thus, the number of rows affectisi(/N') and the secret sharing and recovery computation times in
opposing ways. Fdr= 2, b = 2, andc = 2, the tradeoff space is given in Table 7.

. Storage Blowup Computation Time
r| min(N) | # Shares Per Server Secret Sharing| Secret Recovery
5] 45 5 1 333 s 165 us
6 30 15) 1.103 ms 490 us
7 21 35 15 2.668 ms 1.150 ms
8 24 70 35 5.480 ms 3.020 ms
9 18 126 70 10.31 ms 6.276 ms

Table 7: Effect of increasing number of rows r on performancemetrics when leakage-only fault threshold |
= 2, Byzantine fault threshold b = 2, and crash fault threshall ¢ = 2

Table 7 shows that increasing the number of rows f(ért b + 1) reduces the minimum number of servers
required for that configuration while increasing the numiifeshares#Shares, needed to store each secret. The
storage capacity required at each server thus increades.witcreasing#Shares will also increase the computa-
tion overheads at the users during the secret sharing aret secovery processes. The practical rangeisfthus
limited by the storage blowup and the computation overheads

When there are five rows in the framework, each row gets andisshare. The number of sharesShares)
generated is minimum, and the computation times are smail.4B servers are required for this configuration.
By having7 rows in the framework, the minimum number of servers reguisdowered by more than half @l
servers. For given fault tolerance and security threshblaging fewer servers implies that a higher percentage of
faulty servers is tolerated. Having fewer servers will atsirease the manageability of the system. On the other
hand, the storage blowup at each server increases by afdidtarSince storage cost is cheap, this is a worthwhile
tradeoff. The computation times are also at acceptablesalinen- = 7. Thus, the choice of the number of rows
in the framework can be used to arrive at a suitable tradexfit fpetween the number of servers required, and the
storage blowup and the secret sharing and recovery congutaterheads.

7.3 Relation between Fault Tolerance and Security with Pedrmance Given N Servers

In this section, we assume tHhit data storage servers are available, and investigate tiigorebetween the fault
tolerance and security threshol$, andc and the performance metrics. We consider three cases. lncaae,

11

we fix two of the thresholds at two servers, and increase ther dhreshold from one to five servers. Tables 8, 9,
and 10 show the three different cases. For each combinatigh ©c), we fix the number of rows such that
the secret recovery computation time is the smallest ples&ibthe given configuration. Since the secret recovery
computation time decreases with increasintpr the given(l, b, ¢), r is set to the smallest value ¢& %)
such thatmin (V) is not more thar35 servers.

, Storage Blowup Computation Time
L r | min(N) | 7 Shares Per Server Secret Sharing | Secret Recovery
115 25 10 4 732 us 320 us
21 6 30 15 5 1.103 ms 490 pus
317 35 21 6 1.568 ms 706 us
419 27 84 28 6.750 ms 4.084 ms
5|10 30 120 36 9.675 ms 6.120 ms

Table 8: Effect of increasing the leakage-only fault thresbld | on performance when Byzantine fault thresh-
old b = 2, crash fault threshold ¢ = 2, and min(N)< 35 servers

. Storage Blowup Computation Time
bl r | min(N) | # Shares Per Server Secret Sharing| Secret Recovery
1| 4 24 4 1 267 us 80 us
216 30 15) 1.103 ms 490 us
3|8 32 56 21 4.315 ms 2.740 ms
4 |11 33 462 210 38.88 ms 37.41 ms
5116 32 11440 6435 3.104 sec 2.319 sec

Table 9: Effect of increasing the Byzantine fault thresholdo on performance when leakage-only fault thresh-
old I = 2, crash fault threshold ¢ = 2, and min(N)< 35 servers

. Storage Blowup Computation Time
¢ | r | min(N) | # Shares Per Server Secret Sharing| Secret Recovery
116 24 15 5 1.103 ms 490 ps
216 30 15 5 1.103 ms 490 ps
316 30 15) 1.103 ms 490 us
417 28 35 15 2.668 ms 1.150 ms
o7 28 35 15 2.668 ms 1.150 ms

Table 10: Effect of increasing the crash fault threshold c orperformance when leakage-only fault threshold
| = 2, Byzantine fault threshold b = 2, and min(N) < 35 servers

From Table 8, increasing the leakage-only fault thresldésds to a tolerable increase in the storage blowup
per server, while the secret sharing and secret recoverputation times become high for> 4 servers. The effect
of increasing the Byzantine fault threshdldas shown in Table 9, has a more adverse effect on the pericema
metrics. The storage blowup per server and the secret ghanid recovery computation times increase rapidly
with increasingb. Thus, to achieve a very high performance withservers, only a relatively small number of
Byzantine failures can be tolerated.

On the other hand, the framework can accomodate more crigregawithout any substantial performance
impact, as shown in Table 10. Increasing the crash faulstimie from one to five servers leaves the performance
metrics mostly unchanged. The storage blowup at each sesrvelerable and the computation throughputs are
maintained at acceptable levels.

12

The examples considered above demonstrate that the fralnea tolerate crash failures with little perfor-
mance impact, leakage-only faults with medium peformangeact, and a limited number of Byzantine faults.
The maximum number of faults that can be tolerated is giveRdpyation 4. Thus, giveB5 servers, whenh = 2
andc = 2, up to24 leakage-only faults can be tolerated; whes 2 andc = 2, up to7 Byzantine faults can be
tolerated; and wheh= 2 andb = 2, up to24 crash faults can be tolerated. However, practical limitshensecret
sharing and recovery computation times and the storageupl@aweach server are a more severe restriction on the
actual range of faults that can be tolerated. Notice thatemixfor high values for the Byzantine fault threshold
b, the secret sharing and recovery computation times are smaelier than the figures given for verifiable secret
sharing in Table 2.

7.4 Relation between Fault Tolerance and Security with Pedrmance Given Restriction on Secret
Recovery Computation Time

Since increasind, andb in particular, can lead to a substantial increase in setratiregy and secret recovery
computation times, as observed in Table 8 and Table 9, weverti® requirement of having onBb storage
servers available, and instead impose the requirementhiaecret recovery computation time KB of data
must be less thah.6 ms. The secret recovery computation time is important wieeds are more frequent than
writes, which is often the case. A secret recovery compuridime of1.6 ms for8 KB of data is approximately
six times and eight times slower than the decryption timagithe Rijndael encryption algorithm for key sizes of
32 bytes andl6 bytes respectively, as was shown in Table 3.

: Storage Blowup Computation Time
L v | min(N) | # Shares Per Server Secret Sharing| Secret Recovery
116 18 20 10 1.494 ms 660 us
2|7 21 35 15 2.668 ms 1.150 ms
3|7 35 21 6 1.568 ms 706 us
418 40 28 7 2.109 ms 928 us
519 45 36 8 2.742 ms 1.196 ms

Table 11: Effect of increasing the leakage-only fault threlold | on performance when Byzantine fault
threshold b = 2, crash fault threshold ¢ = 2, and secret recovg computation time < 1.6 ms

, Storage Blowup Computation Time
b r | min(N) | # Shares Per Server Secret Sharing | Secret Recovery
116 12 20 10 1.494 ms 415 us
2|7 21 35 15 2.668 ms 1.150 ms
3|7 42 21 6 1.568 ms 1.00 ms
418 64 28 7 2.109 ms 1.60 ms
518 144 8 1 592 us 576 us

Table 12: Effect of increasing the Byzantine fault threshall b on performance when leakage-only fault
threshold | = 2, crash fault threshold ¢ = 2, and secret recowg computation time < 1.6 ms

Similar to Section 7.3, we consider three cases. In each wastx two of the fault thresholds at two servers,
and increase the other fault threshold from one to five servi@bles 11, 12, and 13 show the three different cases.
For each combination d@f, b, ¢), we fix the number of rows that gives the smallestin (V) while maintaining the
secret recovery computation time to be less th&mms. Restricting the secret recovery computation time #imit
the number of sharegfShares) generated, which in turn keeps the storage blowegchtserver reasonable. In

13

. Storage Blowup Computation Time
c|r|min(N) | # Shares Per Server Secret Shar%g Secret Recovery
117 21 35 15 2.668 ms 1.150 ms
2|7 21 35 15 2.668 ms 1.150 ms
3|7 28 35 15 2.668 ms 1.150 ms
417 28 35 15 2.668 ms 1.150 ms
5|7 28 35 15 2.668 ms 1.150 ms

Table 13: Effect of increasing the crash fault threshold ¢ orperformance when leakage-only fault threshold
| = 2, Byzantine fault threshold b = 2, and secret recovery coiputation time < 1.6 ms

Table 11, the minimum number of servers requiredn(N)) shows a moderate increase with increaging/hen

[= 5 servers, a total o (I + b + ¢) servers out oft servers are faulty. That is, up 80% of the servers can
be faulty (leakage-only, Byzantine, or crash), which sticag acceptable. In Table 12, the minimum number of
servers requirednfin(V)) increases rapidly with the Byzantine fault threshbldrhus, the proposed framework
is suitable for tolerating a small number of Byzantine fault

In Table 13, the computation throughputs and the storageugloemain the same with increasing crash fault
thresholdc for the example considered. Wit servers, up to two crash faults are tolerated, and @dtkervers,
up to5 crash faults can be tolerated. Note that viittrash faults, a total of servers out o8 servers can be faulty.
That is, up ta32% of the servers can be faulty, which is a standard propertgmifada management protocols that
tolerate only Byzantine faults. While in this example moktie faults are crash faults, the number of servers
required is reasonable.

Thus, from Tables 11, 12, and 13, low secret recovery cortipatéimes can be achieved with acceptable
requirements on the number of servers and the storage blatvepch server. As observed in Section 7.3, the
requirement on the number of servers for tolerating crashleakage-only faults is acceptable, while practical
considerations will restrict the number of Byzantine fadtiat can be tolerated. Note that, in all the analyses, the
number of rows in the framework was manipulated to arrivéatdptimum configuration.

8 Discussion

This paper presents a novel approach for realizing a securéaalt tolerant data storage service in collaborative
work environments. Key highlights of our work are:

e The use of perfect secret sharing for providing confideityiaf stored data eliminates the need for crypto-
graphic keys used for encryption purposes, thus avoidiggri@nagement issues.

¢ \erifiable secret sharing schemes are typically used witlepesecret sharing schemes to achieve Byzantine
fault tolerance. We show that verifiable secret sharingreesancur substantial computation overheads, and
are over3000 times slower than the Rijndael encryption algorithm.

¢ We use XOR secret sharing for confidentiality, and managle glaare using replication-based protocols for
Byzantine and crash fault tolerance. The computation @zats are reduced drastically when compared to
verifiable secret sharing schemes, but additional servetsimrage capacities at each server are required.
An example where the secret recovery computation time whsumto six to eight times slower than the
Rijndael decryption algorithm was given.

e We present an architectural framework, call8ddSharing, whose dimension can be varied to tradeoff
between the number of servers required, and the storageplamd secret sharing and recovery computation

14

times. This property was shown to be valuable in arriving @tnoum configurations for different fault
thresholds.

e We introduce a new fault model consisting of crash, Byzantamd eakage-only faults for our analyses. We
believe this new fault model will prove to be useful for armhg works that are common to the areas of fault
tolerance and security.

e For secret recovery computation times that are six to eigteg slower than Rijndael decryption, we show
that our proposed framework provides good fault tolerandeakage-only and crash faults with acceptable
overheads. However, in practice, resource limitationsgkarestriction on the number of Byzantine server
failures that can be tolerated.

An important characteristic of th@ridSharing framework is the tradeoff between the number of servers re-
quired and the storage blowup at each server. This trade@fbrth considering because storage space is cheap,
while more servers could result in manageability probleim$24], the fact that storage space is cheap is exploited
to keep data confidential. Encrypted data is encoded inte@shesing Shamir's scheme and embedded in a huge
file. An adversary must obtain at least a large chunk of thddilebtain enough shares, and the transfer of such
huge amounts of data over the network will result in the sitbn being detected. Likewise, we favor increasing
the storage blowup at each server (to acceptable leveldg wecreasing the number of required servers, as this
will lead to easier intrusion detection and system admisiisin.

Due to space considerations, the communication overhaatdsydeads and writes, which will increase with
the storage blowup at each server, have been omitted in alys®s. However, we note that a number of works
have considered the problem of reducing communicationh@agts. Quorum systems [25] are replication-based
techniques that can be used to balance the read and write waication overheads relative to each other by
setting the quorum sizes appropriately. [26] shows thaug®of cryptographic hashes can significantly reduce
the communication overheads. [27] investigates the tfatlebween computation and communication overheads
for several lossless compression algorithms. The use ptagyaphic hashes and compression algorithms reduce
communication overheads while increasing the computat@nheads, which reinforces the need for reducing the
computation overheads during the secret sharing and recpuvacesses.

References

[1] A. Shamir, “How to share a secreCommunications of the ACM, vol. 22, no. 11, pp. 612—613, 1979.
[2] M. Herlihy and J. D. Tygar, “How to make replicated datawse,” in Crypto, 1987.

[3] A. Adya, R. P. Wattenhofer, W. J. Bolosky, M. Castro, Gr@ek, R. Chaiken, J. R. Douceur, J. Howell,
J. R. Lorch, and M. Theimer, “Farsite: Federated, availaduhel reliable storage for an incompletely trusted
environment,” inProceedings of the 5'" Symposium on Operating Systems Design and Implementation, 2002.

[4] “Mojonation.” http://www.mojonation.net.

[5] Y. Chen, J. Edler, A. Goldberg, A. Gottlieb, S. Sobti, @dianilos, “A prototype implementation of archival
intermemory,” inProceedings of the 4t ACM International Conference on Digital Libraries, 1999.

[6] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. &@atD. Geels, R. Gummadi, S. Rhea, H. Weather-
spoon, W. Weimer, C. Wells, and B. Zhao, “Oceanstore: Anitecture for global-scale persistent storage,”
in Proceedings of the 9t ASPLOS, 2000.

[7] M. Waldman, A. D. Rubin, and L. F. Cranor, “Publius: A ratutamper-evident, censorship-resistant web
publishing system,” irProceedings of the 9" Usenix Security Symposium, 2000.

15

[8] R. J. Anderson, “The eternity service,” Froc. 15t Intl. Conf. on Theory and Application of Cryptography,
1996.

[9] A. lyengar, R. Cahn, C. Jutla, and J. Garay, “Design anplémentation of a secure distributed data reposi-
tory,” in Proceedings of the 14" IFIP International Information Security Conference, 1998.

[10] “Pasis.” http://www.pdl.cmu.edu/Pasis.

[11] R. Dingledine, M. J. Freedman, and D. Molnar, “The fresvdn project: Distributed anonymous storage
service,” inProc. of the International Workshop on Design Issues in Anonymity and Unobservability, 2000.

[12] Y. Deswarte, L. Blain, and J. C. Fabre, “Intrusion talece in distributed computing systems, Hroceedings
of the 14" |EEE Symposium on Security and Privacy, 1991.

[13] G. R. Blakley, “Safeguarding cryptographic keys,” Bnoceedings of the National Computer Conference,
1979.

[14] M. Rabin, “Efficient dispersal of information for sedtyy load balancing, and fault tolerancdgurnal of the
ACM, vol. 38, no. 2, pp. 335-348, 1989.

[15] M. Naor and A. Wool, “Access control and signatures vieoigum secret sharing/EEE Transactions on
Parallel and Distributed Systems, vol. 9, no. 9, pp. 909-922, 1998.

[16] S. Lakshmanan, M. Ahamad, and H. Venkateswaran, “Respe security for stored data,EEE Transac-
tions on Parallel and Distributed Systems, vol. 14, no. 9, pp. 818-828, 2003.

[17] T. M. Wong,Decentralized recovery for survivable storage systems. PhD thesis, Carnegie Mellon University,
2004.

[18] M. A. Marsh and F. B. Schneider, “Codex: A robust and seaecret distribution system EEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 34—47, 2004.

[19] K. Kulesza and Z. Kotulski, “On secret sharing scheméb extended capabilities,” iFroceedings of the
Regional Conference on Military Communication and Information Systems, 2002.

[20] M. Ito, A. Saito, and T. Nishizeki, “Secret sharing soferealizing general access structure,Pnoceedings
of the IEEE Global Communication Conference, 1987.

[21] “The miracl software library.” http://indigo.i@hscott/.

[22] H. Krawczyk, “Distributed fingerprints and secure infaation dispersal,” irProceedings of the 12t" ACM
Symposium on Principles of Distributed Computing, 1993.

[23] P. Feldman, “A practical scheme for non-interactiveifi@hle secret sharing,” ifProceedings of the 28"
|EEE Symposium on Foundations of Computer Science, 1987.

[24] D. Dagon, W. Lee, and R. Lipton, “Protecting secret dadan insider attacks,” irProceedings of the 9t
International Conference on Financial Cryptography and Data Security, 2005.

[25] D. K. Gifford, “Weighted voting for replicated dataji Proc. of the 7t" Symp. on Operating Systems Princi-
ples, 1979.

[26] D. Tulone, “Enhancing efficiency of Byzantine-toletazoordination protocols via hash functions,” fno-
ceedings of the 10*" Euro-Par conference, 2004.

[27] Y. Wiseman, K. Schwan, and P. Widener, “Efficient end ol elata exchange using configurable compres-
sion,” in Proceedings of the 24" International Conference on Distributed Computing Systems, 2004.

16

