I-Queue: Smart Queues for Service Management

Mohamed S. Mansour!, Karsten Schwan', and Sameh Abdelaziz?

1 The College of Computing at Georgia Tech, Atlanta GA 30332, USA
{mansour, schwan}@cc.gatech.edu
2 Worldspan, L.P., Atlanta GA 30339, USA sameh.abdelaziz@worldspan.com

Abstract. Modern enterprise applications and systems are character-
ized by complex underlying software structures, constantly evolving fea-
ture sets, and frequent changes in the data on which they operate. The
dynamic nature of these applications and systems poses substantial chal-
lenges to their use and management, suggesting the need for automated
solutions. This paper considers a specific set of dynamic changes, large
data updates that reflect changes in the current state of the business,
where the frequency of such updates can be multiple times per day. The
paper then presents techniques and their middleware implementation
for automatically managing requests streams directed at server appli-
cations subjected to dynamic data updates, the goal being to improve
application reliability in face of evolving feature sets and business data.
These techniques (1) automatically detect input patterns that lead to
performance degradation or failures and then (2) use these detections
to trigger application-specific methods that control input patterns to
avoid or at least, defer such undesirable phenomena. Lab experiments
using actual traces from Worldspan show a 16% decrease in frequency
of server restarts when using these techniques, at negligible costs in ad-
ditional overheads and within delays suitable for the rates of changes
experienced by this application.

1 Introduction

The complexity of modern enterprise systems and applications is causing re-
newedinterest in ways to make them more reliable. Platform virtualization [1]and
automated resource monitoring and management [2,3] are system-level contri-
butions to this domain. Middleware developers have introduced new function-
ality like automated configuration management [4],improved operator interfaces
like Tivoli’s ‘dashboards’ [5],automated methods for performance understand-
ing and display [6], and new methods for limiting the potential effects of fail-
ures [7,8]. Large efforts like IBM’s Autonomic Computing and HP’s Adaptive
Enterprise initiativesare developing ways to automate complex management or
configuration tasks,creating new management standards ranging from Common
Base Events for representing monitoring information [3] to means for stating
application-level policies or component requirements (e.g. WSLAJ9]). Finally,
applications often relax their reliability requirements, to avoid the potentially
high costs of maintaining or preserving state for restarts or recovery, an early



example being the BASE vs. ACID requirements formulated for search engines
[10].

This paper addresses service failures in distributed applications. The failure
model used is typical for distributed enterprise applications like web services,
where ‘failures’ are not direct or immediate system or application crashes, but
cause atypical or unusual application behaviors captured by distributed moni-
toring techniques[11,12].

Examples include returns of empty or insufficient responses, partially cor-
rect results, performance degradation causing direct or increasingly probable
violations of delay guarantees specified by SLAs, and others. In the peer-to-peer
literature, researchers are using such behaviors to build or maintain distributed

trust models [13], in order to avoid using untrustworthy machines or network
links.

Focusing on enterprise systems with reliable hardware infrastructure but po-
tentially unreliable software, we investigate ways in which they can deal with
unusual behaviors and eventually, failures caused by single or sequences of ap-
plication requests, which we term poison request sequences. In earlier work, we
identified and found ways to deal with a simple case observed by one of our
industry partners, which concerned single requests, termed a ‘poison message’
that consistently caused unusual system and application responses [8]. In this
paper, we tackle the more complex problem of sets or sequences of requests that
cause such behaviors, and where such problems may depend on dynamic sys-
tem conditions, such as which business rules are currently being run or to what
current states they are being applied. The specific example studied is a global
distribution system (GDS) that does transaction processing for the travel indus-
try. To summarize, our assumption is that even with extensive testing applied
to modern enterprise applications, it is difficult, if not impossible to ensure their
correct operations under different conditions. This is not only because of the un-
due costs involved with testing such systems under all possible input sequences
and application states, but also because the effects of poison message sequences
can expose hidden faults that depend both on the sequence of input messages
and on changes in system state or application databases. Examples of the lat-
ter include regular business data updates, evolving application databases, and
system resources that are subject to dynamic limitations like available virtual
memory, communication buffers, etc.

The particular problem considered in this paper is poison requests or request
sequences arriving at a server system. These sequences lead to corrupted internal
states that can result in server crash, erroneous results, degraded performance,
or failure to meet SLAs for some or all client requests. To identify such sequences,
we monitor each single server, its request sequences and responses, and its re-
source behavior. Monitoring results are used to dynamically build a library of
sequence patterns that cause server failures. These techniques use dynamic pat-
tern matching to detect poison sequences. While failure detection uses general
methods, the techniques we use for failure prevention exploit application seman-
tics, similar to what we have done in our earlier work on poison messages and



more generally, in our ‘Isolation-RMI’ implementation of an improved commu-
nication infrastructure for Java-based enterprise infrastructures like Websphere
or JBOSS [8]. As with solutions used to improve the performance of 3-tier web
service infrastructures [14], we simply interpose a request scheduler between
clients and server. In contrast to earlier work on load balancing [14], however,
the purpose of our scheduler is to detect a potentially harmful request sequence
and then change it to prevent the failure from occurring or at least, to delay
its occurrence, thereby improving total system uptime. One specific prevention
method used in this paper is to shuffle requests or change request order to defer
(or eliminate) an imminent server crash. The idea is to dynamically apply dif-
ferent request shuffling methods within some time window, to prevent a failure
or to at least, opportunistically defer it, thereby reducing the total time spent
on system recovery or reboot.

Our motivation and experimental evaluation are based on a server complex
operated by Worldspan, which is a leading GDS and the global leader in Web-
based travel e-commerce. Poison message sequences and their performance ef-
fects were observed in a major application upgrade undertaken by the company
in 2005, after a one man-year development effort for which its typical internal
testing processes were used. The failures observed were degraded system per-
formance resulting from certain message sequences, but system dynamics and
concurrency made it difficult to reproduce identical conditions in the lab and
identify the exact sequence and resource conditions that caused the problem. The
current workaround being used is similar to the micro-reboot methods described
in [15]. The experimental work described in this paper constitutes a rigorous
attempt todeal with problems like these, using requests, business software, and
request patterns made available to our group by this industry partner.A con-
crete outcome of our research is the I-Queue request management architecture
and software implementation. I-Queue monitors a stream of incoming Web Ser-
vice requests, identifies potential poison message sequences, and then proactively
manages the incoming message queue to prevent or delay the occurrence of fail-
ures caused by such sequences. The I-Queue solution goes beyond addressing the
specific server-based problemoutlined above, for multiple reasons. First, I-Queue
is another element of themore general solution for performance and behavior
isolation for distributedenterprise applications described in [8]. The basic idea of
that solutionis to embed performance monitoring and associated management
functionality intokey interfaces of modern enterprise middleware: (1) component
interfaces, (2) communication substrates like RMI, and (3) middleware-system
interfaces. Here,I-Queue is the messaging analogue of our earlier work on I-RMI
[8]. Second,I-Queue solutions can be applied to any 3-tier web service infrastruc-
ture thatactively manages its requests, an example being the popular RUBIS
benchmarkfor which other research has developed request queuing and man-
agement solutionsto better balance workloads across multiple backend servers.
In that context,however, I-Queue’s dynamic sequence detection methods would
be embedded intospecific end servers or into queues targeting certain servers
rather than intothe general workload balancing queue containing all requests



in the system. Otherwise, substantial overheads might result from the need to
sort requestsby target server ID. Third, [-Queue solutions can be applied to
request- ormessage-based systems, examples of the latter including event-based
orpublish-subscribe systems [16] or messaging infrastructures [17,18].

In Section 2, we present the scenario that motivated this work. In Section
3, we describe the system architecture and details of the system design. Section
4 gives an overview of the sample application used in evaluation. We list the
experimental results in Section 5 and survey related work in Section 6. We finally
conclude in Section 7 with closing remarks and future research directions.

2 DMotivating Scenario

Figure 1 shows an overview of the major components of Worldspan’s distributed
enterprise applications and systems. Theairlines publish their fares, rules and
availability information to clearing warehouses (CW). The CW in turn publishes
the updates to several GDSs. The GDS implements several services which for
a given travel itinerary searches for the lowest available fare across multiple
airlines. It is estimated that the size of fare and pricing database at Worldspan,
is currently at 10GB and is expected to increase by approximately 20% over the
next few years. Worldspan receives an average of 11.5 million queries per day
with contractual agreements to generate a reply within a predetermined amount
of time. The high message volume coupled with constantly changing system state
creates a real need for monitoring and reliability middleware that can learn the
dynamically changing performance characteristics and adapt accordingly.

Client 1
Clearinghouse
Client 2 (CW)
Client 3 ﬁ
Airlines

Fig. 1. General overview of message flows in air reservation systems



3 System Architecture

I-Queue uses a simple monitor-analyze-actuate loop similar to those described in
previous adaptive and autonomic computing literature [19, 20]. Our contribution
is adding a higher level analysis module that monitors message traffic and learns
the message sequences more likely to cause erratic behavior then apply applica-
tion specific methods to prevent or reduce the likelihood of such problems.The
monitoring component observes inputs and outputs of the system. The analysis
module in our system is the Learning Module (LM), which performs sensitivity
analysis by correlating various system performance metrics and input message
parameters. The goal of the Learning Module is to establish a set of parame-
ter(s) that can act as good predictors for abnormal behaviors. The output is an
internal model that can be used to predict performance behavior for incoming
message streams. LM is modular and can use any machine learning algorithm
suited for the problem at hand. This paper experiments with algorithms that
use Markov Models.The actuator component is the Queue Management Mod-
ule (QMM). Using the internal performance model generated by LM, QMM
prescans the incoming messages in a short window to see if they are likely to
cause performance problems. If a suspicious sequence is detected, QMM takes an
application-specific action to prevent this problem from occurring, or at least,
to defer it. The action used in thispaper is to re-arrange the buffered messages
to another sequence that is not known to cause performance problems, or that
is known to cause fewer problems. Figure 2 shows an overview of the system
architecture.

7
Message Queue
| A
|
Message . : Observe Control

Behavior

Sequence o Message Message
o Monitoring !

Monitoring | Parameters Sequence

Y y : Y
LM — QMM

Maodel
! Control Phase

Learning Phase

Fig. 2. I-Queue System Architecture

3.1 Internal Design

To demonstrate the value of I-Queue, we used Hidden Markov Models (HMMs)
[21] to implement the LM. In our traces, each message is completely independent



of other messages, and messages can be processed in any order without changing
their semantics.During the learning phase, we construct transition matrices for
each observed parameter(e.g., message size, internal message parameters, mes-
sage inter-arrival time, ...). A transition matrix is a 2D matrix, for each message
pair and a specific parameter, where the value of the parameter from the first
message indicates the matrix column, and the value of the parameter from the
second message indicates the matrix row. Analyzing message pairs leads to a
first order model. For an N-order model, we check N 4+ 1 messages, the con-
catenated parameter values from messages 1 to IV indicate the column and the
parameter value from message N + 1 indicate the row. To reduce matrix size,
we use a codebook to convert parameter values to a numeric index. For multi-
valued parameters (i.e., list parameters), we use a two level codebook, where the
first level encodes each value in the array, then we combine the array values for a
message in sorted order and use that for a lookup into the second level codebook.
N-dimensional parameters can be dealt with using N 41 levels of codebooks. We
currently construct one transition matrix per parameter, but support for combi-
nations of parameters can be added. For each message, we record all parameters
as they arrive, and we observe system state after they are processed. If the sys-
tem ends in a positive state, then we increment the corresponding cells in the
transition matrices. If the server crashes or otherwise shows any performance
misbehaviors, then we decrement the appropriate cells. During this training pe-
riod, we also calculate a prediction error rate. This rate gives us an indication
of the quality of a parameter as a predictor. It is calculated by counting the
number of times the transition matrix for a certain parameter indicates strong
likelihood of performance problems that do not actually occur (think of it as
a false alarm rate).An example of a transition matrix is shown in Table 1. For
our experiments, we use a second order Markov Model. The rows of the matrix
are labeled with the codes from 2 consecutive messages, the columns are labeled
with the message that follows in sequence. The cell values give us an indication
of server behavior as it executes a particular sequence of messages. A positive
value indicates good behavior, e.g., message sequence AAA (first row by first
column) and the higher the value the better, e.g., AAA is more preferable than
AAE (first row by fifth column). A negative value indicates strong likelihood of
poor server performance for a certain message sequence (e.g., ADB), the lower
the negative value the worse. Sequences not observed in training are noted by
a nil in the transition matrix. At the end of the training period, we choose the
parameter with the least prediction error rate as our predictor (multiple pa-
rameters with relatively close error rates require human evaluation).To account
for system initialization and warm up effects, we also construct a separate set
of matrices for tracking the first N messages immediately following a system
restart.At the end of the learning phase, we have a transition matrix that is fed
to QMM. QMM evaluates the buffered messages before releasing a message to
the head of the queue. The performance score is calculated by enumerating all
possible orderings of the messages and for each ordering examine the message
pairs and add the corresponding value from the transition matrix. A higher score



Table 1. A portion of the transition matrix from the resource leakage experiment

ABCDE F..
AA|11129 5 730143
AB| 1726 2 5 7 9
AC| 4 2nil 2 2 12
AD| 2 -2 -1nil-1 5

BA| 33 4 1-1 3 36
BB| 11 3 2 -2 4 15
BC| 2 1 1nil 1 -1

indicates a sequence that is less likely to cause performance problems a low score
indicates a sequence that is very likely to cause performance problems. The or-
dering with the highest score is chosen and the queue is ordered accordingly.
QMM also performs this reordering after a server restart.

4 Overview of Sample Applications

The experimental evaluation of I-Queue uses data traces obtained from Worldspan,
a leading GDS and the global leader in Web-based travel e-commerce. Each mes-
sage is a request for pricing a travel itinerary. Through contractual agreements
with its customers, Worldspan needs to generate a reply message within a prede-
fined time limit. It has been observed in the new server that it will occasionally
slow down and fail to meet its delivery deadlines. To emulate this behavior, we
utilize the Worldspan traces and build simple models of applications servers.
In this paper, we report results obtained from experimenting with two server
models, both based on known memory leak behaviors as well as other resource
leak problems.

4.1 Basic Server Model

The specific subsystem managed by I-Queue is Worldspan pricing query service.
The service is handled by a farm of 1500 servers. Query messages from various
clients are placed in one of two global queues. Each server in the farm acts
independently of the others. As a server becomes available for processing, it pulls
a message from the queue, processes the message, and generates a corresponding
response message forwarded to other parts of the system for further processing.
The request message contains a set of alternative itineraries for which the lowest
available fare is to be found by the server. The response message contains a list
of fares for each itinerary sorted by fare. All request messages are independent,
and the server should maintain an average memory usage level when idle.



4.2 Experimental Models

The I-Queue implementation built for the pricing server monitors server behavior
and correlates it with request sequences. To evaluate it, we construct two models
in our labs and apply the traffic traces obtained from Worldspan to both of
these models. The goal is to evaluate the I-Queue approach with simple failure
models using realistic traces. Our future work will evaluate the approach with
Worldspans actual server (see the Conclusion section for more detail). The first
class of failures used to evaluate I-Queue assumes a server with a small memory
leak that is directly proportional to the size of the input message. The larger
the input message, the more itineraries to process and hence, more work by the
server which can lead to a larger leak. Memory leaks cause gradual degradation
in server performance due to memory swapping and can eventually result in a
server crash. To detect problems like these, the I-Queue prototype implements
an early detection module to detect performance degradation early. The module
utilizes the Sequential Partial Probability Test (SPRT) statistical method for
testing process mean and variance. The server model is reset when SPRT raises
an alarm indicating performance degradation significant enough to be detected.
Real-time SPRT was developed in the 1980s based on Wald’s original process
control work back in 1947 [22]. SPRT features user-specified type I and type II
error rates, optima detection times, and applicability to processes with a wide
range of noise distributions. SPRT has been applied in enterprise systems for
hardware aging problems [23] and for other anomaly detection [24]. SPRT is
also used for early fault detection in nuclear power plants [25].

The second class of failures is one in which the server caches application
state in a LRU cache. Each response message in the Worldspan traces contain
a list of data sets used to process the request. A typical request would need 6-9
sets be processed. We build a simple model where these data sets are cached
internally in a LRU cache. For each message, if the data set is cached, then it
is used immediately, and if it is not present in the cache, then it is requested
from the database using a database connection pool. The new entry is placed in
the pool, and the least recently used entry is flushed from the cache. We inject
a fault into the connection pool where a connection is not returned to the pool
after it is used. This results in temporary pool starvation, eventually requiring a
server reboot. We select this fault since it has been observedin multiple industry
development teams with which we have worked in the past.Faults like these are
non-trivial, because the interaction between data cache and database connection
pool is highly dependent on the stream of incoming requests as well as other
business logic.

5 Experimental Results

5.1 Experimental Setup

Experiments are run in Georgia Tech’s enterprise computing laboratory, the
model server were built in Java and run on an x345 IBM server(hostname:



dagobah), a dual 2.8GHz Xeon machine with 4GB memory and 1GB/sNIC,
running RedHat Linux kernel version 2.4.20. Sensitivity analysis and queue man-
agement code were also implemented in Java.

5.2 Memory Leak Model

Our first experiment concerns sensitivity analysis using Worldspan’s traffic traces.
We model a server with a minor bug that leaks memory in proportion to the
input message size. Figure 3 shows the results of our detection algorithm. The
x-axis shows the different parameters we analyzed, the corresponding error rate
is plotted on the y-axis. The error rate is a measure of the quality of a specific
parameter as a predictor with lower error rates indicating a better predictor. As
seen in the graph, the parameter MSG-SIZE has error rate of 0% which means it
accurately predicts the failure 100% of the time. In the second part of the experi-

0.9 4 0.869

0.8 4
o 0.7 -
g 0.6
l5 05 7
5 04 03 0.323
w

0.3 1 0.218

0.2

01 | l

0
0 T
MSG-SIZE P-IA P-LI POFF- P-PC
REPLY-ON
Parameter

Fig. 3. Memory Leak Model: Sensitivity to various message parameters and message
size

ment, we engage the queue management module to reorder the messages. Figure
5 shows the reduction in number of server restarts as a function of the buffer
length in our managed queue. We observe here that we do not get a significant
improvement with larger buffer sizes. Instead, a buffer size of 5 is sufficient for
giving us adequate results. The training phase for our system involves running
a batch of messages and observing the system behavior for them. A training
set is composed of 460 messages and in the real server environment, a message
typically takes 4-16 seconds to process. Thus, in the best case scenario, we need
30 minutes to train the system (not counting the time needed to re-start the
server). Given the cost of the learning phase of our system, we next evaluate
the effectiveness of our algorithms for different training set sizes. Figure 4 shows
system improvement measured as average reduction in number of crashes on the
y-axis versus number of training sets on the x-axis. The training sets are gener-
ated by random re-ordering of the original set. The reduction rate is measured
by counting the number of server restarts for the original batch of messages with



the managed vs. the unmanaged queue. It is a measure of the reduction in server
faults we can achieve by using I-Queue, hence a higher reduction rate indicates
more value in using I-Queue. The graph shows that we can get very good results
with only a few training sets. This shows that I-Queue can be deployed with
reasonable training time.

1 1
0.95 0.95 Queue Length =5
0.9 4 - ) 0.9 4
foss . TenmgSelSze-50 2 g5
[ [
< 0.8 4 < 0.8 4
2 0.75 4 2 0.75
S 074 S 074
3 065 | 3 0.65 |
oc oc
0.6 4 0.6 4
0.55 | 0.55 |
0.5 . . . 0.5 . . !
0 10 20 30 40 50 150 250 350
Queue Length Training Set Size

Fig. 4. Memory Leak Model: Error reduction measured for different queue length set-
tings(left) and for different training set sizes (right)

0.9
0.8 - 0.753 0.763 0.77 0.734
071 0.694
2 0.6
& 05 -
S 0.4
w 0.3 -
0.2 4
0.1 - ,
O il
MSG- P-1A P-LI POFF- P-PC REPLY-
SIZE REPLY- BMV
ON
Parameter

Fig. 5. Connection Model: Sensitivity to various message parameters

5.3 Connect Leak Model

To further evaluate I-Queue, we conduct a second experiment with a more com-
plicated server model that exhibits a subtle resource leak which only occurs if a
data item is not present in cache. The purpose of this experiment is to evaluate
I-Queue against a non-linear leakage model. Figure 6 shows the results of the
sensitivity analysis, we notice that the REPLY-BMV parameter accurately pre-
dicts the fault with 0% error rate and we use it in the next set of experiments



as our predictor. Figure 6 shows the results of running I-Queue with a managed
queue, again showing good improvement and a reasonable training time.

0.95 4 0.95 Queue Length = 5
0.9 1 Trainging Set Size = 50 0.9 1
[} o
E 0854 ———— | g 0.85
g 0.8 4 g 0.8 4
£ 0.75 4 £ 0.75
3 074 S 0714
3 0.65 1 2 0.65
[ oc
0.6 1 0.6 1
0.55 1 0.55
0.5 T T T 0.5 T T T
0 10 20 30 40 50 150 250 350
Queue Length Training Set Size

Fig. 6. Connection Leak Model: Error reduction measured for different queue length
settings(left) and for different training set sizes (right)

6 Related Work

Our approach builds on established practice, in which machine learning tech-
niques have been applied successfully to server and process monitoring. Ap-
plication traces for detecting application faults are examined in [7,26,12,27].
Bowring et al. uses similar methods to classify software behavior based on pro-
gram traces [28]. These studies use application traces to detect a problem as it
occurs and to recover the system by restarting the whole or parts of the system.
Our approach differs in that we use application-defined methods to interpose
and reschedule the message stream to minimize the number of system restarts
and hence, increase system utility.

The parallel computing domain has an extensive body of work on reliabil-
ity using various monitoring, failure prediction [29], and checkpointing tech-
niques [30,31]. Our work studies enterprise applications, specifically those in
which system state is typically preserved in an external persistent storage (e.g.,
a relational database). In such systems, checkpointing the system state amounts
to persisting the input event until it is reliably processed, and the cost of fail-
ures is dominated by process startup and initialization. In such environments, a
reduction in the frequency of failures provides a tangible improvement to the sys-
tem operators. Additionally, the dynamic models we build (including the failure
predictor) can prove valuable to system programmers as they try to troubleshoot
the source of failure.

7 Conclusions and Future Work

This paper demonstrates a useful technique for automatically (1) detecting un-
desirable (i.e., poison) message sequences and then, (2) applying application-



specific methods to achieve improved system performance and reliability. Future
work includes conducting on-site experiments with the Worldspan search en-
gine. We anticipate having more complex behaviors corresponding to multiple
failure models interrelated in non-linear ways. We plan to approach this problem
by using some of the well-studied clustering techniques (e.g., K-means analysis)
to isolate the different behaviors and then apply our methods to each one sepa-
rately.Our longer term agenda is to use the monitoring and reliability techniques
demonstrated in this paper in the context of service-oriented architectures. We
are particularly interested in dynamically composed systems where users can
create ad-hoc flows such as portal applications for high level decision support
systems. In such systems, it is imperative to build middleware infrastructure to
detect abnormal behaviors induced by certain component or service interactions
and also, to impose ‘firewalls’ that can contain such behaviors and prevent them
from further spreading into other parts of the system.

Acknowledgements. We gratefully acknowledge the help of James Miller in
understanding the structure and parameters of the query messages. Many thanks
also to Zhongtang Cai for directing us to the SPRT papers and algorithm.

References

1. Barham, P.T., Dragovic, B., Fraser, K., Hand, S., Harris, T.L., Ho, A., Neugebauer,
R., Pratt, 1., Warfield, A.: Xen and the art of virtualization. In: Proceedings of
the 19th ACM Symposium on Operating Systems Principles (SOSP 2003), Bolton
Landing, NY (2003) 164-177

2. Agarwala, S., Poellabauer, C., Kong, J., Schwan, K., Wolf, M.: System-level re-
source monitoring in high-performance computing environments. Journal of Grid
Computing 1(3) (2003) 273 — 289

3. IBM: Common base event. http://www.ibm.com/developerworks/library/
specification/ws-cbe/ (2003) [online; viewed:5/24/2006].

4. Swint, G.S., Jung, G., Pu, C., Sahai, A.: Automated staging for built-to-order
application systems. In: Proceedings of the 2006 IFIP/IEEE Network Operations
and Management Symposium (NOMS 2006), Vancouver, Canada (2006)

5. IBM: IBM Tivoli monitoring. (http://www.ibm.com/software/tivoli/products/
monitor/) [online; viewed: 5/24/2006].

6. Bodic, P., Friedman, G., Biewald, L., Levine, H., Candea, G., Patel, K., Tolle, G.,
Hui, J., Fox, A., Jordan, M.I., Patterson, D.: Combining visualization and statisti-
cal analysis to improve operator confidence and efficiency for failure detection and
localization. In: ICAC ’05: Proceedings of the Second International Conference
on Automatic Computing, Washington, DC, USA, IEEE Computer Society (2005)
89-100

7. Roblee, C., Cybenko, G.: Implementing large-scale autonomic server monitoring
using process query systems. In: ICAC ’05: Proceedings of the Second International
Conference on Automatic Computing, Washington, DC, USA, IEEE Computer
Society (2005) 123-133

8. Mansour, M.S., Schwan, K.: I-RMI: Performance isolation in information flow
applications. In Alonso, G., ed.: Proceedings ACM/IFIP/USENIX 6th Interna-



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

tional Middleware Conference (Middleware 2005). Volume 3790 of Lecture Notes
in Computer Science., Grenoble, France, Springer (2005)

Keller, A., Ludwig, H.: The WSLA framework: Specifying and monitoring service
level agreements for web services. J. Netw. Syst. Manage. 11(1) (2003) 57-81
Fox, A., Gribble, S.D., Chawathe, Y., Brewer, E.A., Gauthier, P.: Cluster-based
scalable network services. In: SOSP ’'97: Proceedings of the sixteenth ACM sym-
posium on Operating systems principles, New York, NY, USA, ACM Press (1997)
78-91

Chen, M., Kiciman, E., Fratkin, E., Brewer, E., Fox, A.: Pinpoint: Problem deter-
mination in large, dynamic, internet services. In: Proceedings of the International
Conference on Dependable Systems and Networks (IPDS Track), Washington D.C.
(2002)

Fox, A., Kiciman, E., Patterson, D.: Combining statistical monitoring and pre-
dictable recovery for self-management. In: WOSS ’04: Proceedings of the 1st ACM
SIGSOFT workshop on Self-managed systems, New York, NY, USA, ACM Press
(2004) 49-53

Jun, S., Ahamad, M., Xu, J.J.: Robust information dissemination in uncooperative
environments. In: ICDCS ’05: Proceedings of the 25th IEEE International Con-
ference on Distributed Computing Systems (ICDCS’05), Washington, DC, USA,
IEEE Computer Society (2005) 293—-302

Jin, W., Chase, J.S., Kaur, J.: Interposed proportional sharing for a storage service
utility. In: Proceedings of the joint international conference on Measurement and
modeling of computer systems, ACM Press (2004) 37-48

Candea, G., Cutler, J., Fox, A.: Improving availability with recursive microreboots:
a soft-state system case study. Perform. Eval. 56(1-4) (2004) 213-248

Kumar, V., Cai, Z., Cooper, B.F., Eisenhauer, G., Schwan, K., Mansour, M.S.,
Seshasayee, B., Widener, P.: IFLOW: Resource-aware overlays for composing and
managing distributed information flows. In: Proceedings of ACM SIGOPS EU-
ROSYS’2006, Leuven, Belgium (2006)

Sun Microsystems:  Java message service (JMS). (http://java.sun.com/
products/jms/) [online; viewed: 5/24/2006].

Tibco: Tibco Rendezvous. (http://wuw.tibco.com/software/messaging/
rendezvous. jsp) [online; viewed: 5/24/2006].

Oreizy, P., Gorlick, M., Taylor, R., Heimbigner, D., Johnson, G., Medvidovic, N.,
Quilici, A., Rosenblum, D., Wolf, A.: An architecture-based approach to self-
adaptive software. IEEE Intelligent Systems 14(3) (1999) 54—62

Hanson, J.E., Whalley, 1., Chess, D.M., Kephart, J.O.: An architectural approach
to autonomic computing. In: Proceedings of the First International Conference
on Autonomic Computing (ICAC’04), Washington, DC, USA, IEEE Computer
Society (2004) 2-9

Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in
speech recognition. (1990) 267-296

Wald, A.: Sequential Analysis. John Wiley & Sons, NY (1947)

Cassidy, K.J., Gross, K.C., Malekpour, A.: Advanced pattern recognition for detec-
tion of complex software aging phenomena in online transaction processing servers.
In: DSN ’02: Proceedings of the 2002 International Conference on Dependable
Systems and Networks, Washington, DC, USA, IEEE Computer Society (2002)
478-482

Gross, K.C., Lu, W., Huang, D.: Time-series investigation of anomalous CRC error
patterns in fiber channel arbitrated loops. In Wani, M.A., Arabnia, H.R., Cios,
K.J., Hafeez, K., Kendall, G., eds.: ICMLA, CSREA Press (2002) 211-215



25.

26.

27.

28.

29.

30.

31.

Gross, K.C., Humenik, K.: Sequential probability ratio tests for nuclear plant
component surveillance. In: Nuclear Technology. (1991) 93-131

Lohman, G., Champlin, J., Sohn, P.: Quickly finding known software problems
via automated symptom matching. In: ICAC ’05: Proceedings of the Second In-
ternational Conference on Automatic Computing, Washington, DC, USA, IEEE
Computer Society (2005) 101-110

Jiang, G., Chen, H., Ungureanu, C., Yoshihira, K.: Multi-resolution abnormal trace
detection using varied-length n-grams and automata. In: ICAC ’05: Proceedings of
the Second International Conference on Automatic Computing, Washington, DC,
USA, IEEE Computer Society (2005) 111-122

Bowring, J.F., Rehg, J.M., Harrold, M.J.: Active learning for automatic classifica-
tion of software behavior. In: ISSTA ’04: Proceedings of the 2004 ACM SIGSOFT
international symposium on Software testing and analysis, New York, NY, USA,
ACM Press (2004) 195-205

Li, Y., Lan, Z.: Exploit failure prediction for adaptive fault-tolerance in cluster
computing. In: CCGRID ’06: Proceedings of the Sixth IEEE International Sympo-
sium on Cluster Computing and the Grid (CCGRID’06), Washington, DC, USA,
IEEE Computer Society (2006) 531-538

Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of
distributed systems. ACM Trans. Comput. Syst. 3(1) (1985) 63-75

Coffman, E., Gilbert, E.: Optimal strategies for scheduling checkpoints and pre-
ventative maintenance. IEEE Trans. Reliability 39(1) (1990) 9-18



