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Abstract—Ocelot is a dynamic compilation framework de-
signed to map the explicitly parallel PTX execution model
used by NVIDIA CUDA applications onto diverse many-core
architectures. Ocelot includes a dynamic binary translator from
PTX to many-core processors that leverages the LLVM code
generator to target x86. The binary translator is able to execute
CUDA applications without recompilation and Ocelot can in
fact dynamically switch between execution on an NVIDIA GPU
and a many-core CPU. It has been validated against over 100
applications taken from the CUDA SDK [1], the UIUC Parboil
benchmarks [2], the Virginia Rodinia benchmarks [3], the GPU-
VSIPL signal and image processing library [4], and several
domain specific applications.

This paper presents a detailed description of the implemen-
tation of our binary translator highlighting design decisions
and trade-offs, and showcasing their effect on application per-
formance. We explore several code transformations that are
applicable only when translating explicitly parallel applications
and suggest additional optimization passes that may be useful
to this class of applications. We expect this study to inform the
design of compilation tools for explicitly parallel programming
models (such as OpenCL) as well as future CPU and GPU
architectures.

I. INTRODUCTION

A blind embrace of the many-core revolution has resulted
in a surplus of applications that can no longer fully utilize
the resources available in modern processors. Applications that
could once leverage frequency and ILP scaling to transparently
improve performance are now confined to a single core: they
are restricted to an amount of chip area that is shrinking with
Moore’s law. A pursuit of this lost scalability has lead to a
frantic transition towards many-core architectures with only
an afterthought given to the programming models that will
follow behind.

Most parallel programming models are not up to the task.
Those that rely on heavy-weight threads and coherent shared
memory will not be scalable due to excessive synchronization
overheads [5] and per-thread state explosion. Yet these are the
most commercially prevalent models.

Designing applications that perform well on modern as well
as future architectures can no longer be an afterthought that
is passed off to processor architects and circuit designers. It
must be a principle requirement that is addressed explicitly
in the programming language, execution model, compilation
chain, and the hardware architecture. Much of the progress
made towards this goal has been pioneered by the graphics

community, which has almost uniformly adopted a bulk-
synchronous [6] programming model [7]–[9] coupled with
architectures that simultaneously mextend many-core to its
limits while abandoning global cache coherence and strong
memory consistency [9]–[12]. Unfortunately, this body of
work has largely ignored the impact of these new programming
paradigms and architectures on the aspects of compiler design.

Moving to an explicitly parallel, bulk-synchronous program-
ming model significantly changes the problem presented to a
compiler; selecting a many-core architecture with a varying
distribution of hardware resources significantly changes its
target. Whereas compilers for sequential or implicitly parallel
programming models were required to automatically extract
instruction or thread level parallelism from applications, com-
pilers for explicitly parallel applications must reduce the
degree of parallelism to match the resources available in a
given processor. This fundamental change in the problem def-
inition coupled with the additional constructs for dealing with
parallel execution that are made visible to the compiler will
effect a significant change in the design of future compilers.

Scalable bulk-synchronous applications will also require
just-in-time compilation and binary translation. Whether bi-
nary translation is done using hardware decoders as in modern
Intel and AMD x86 [13], [14] processors or in software as in
NVIDIA GPUs [7], the evolution of the processor michroar-
chitecture in response to circuit and technology constraints
will mandate changes in the hardware/software interface.
Binary translation will be necessary to bridge this gap, but
it will not be enough alone to ensure high performance
on future architectures. Dynamic compilation and life-long
program optimization will be needed to traverse the space of
program transformations and fit the degree of parallelism to the
capabilities of future architectures that have yet to be designed.

Ocelot provides a framework for evaluating extent of these
changes to compiler design by leveraging the explicitly parallel
PTX execution model. We have completed a comprehensive
dynamic compiler infrastructure for PTX including PTX to
PTX transformations as well as backend targets for NVIDIA
GPUs and many-core CPUs. In this paper, we explore the
detailed design and implementation of our many-core CPU
backend. Our intent is to expose the unique problems presented
while compiling explicitly parallel execution models to many-
core architectures and evaluate several potential solutions.



Organization. This paper is organized as follows. Section
II gives background on Ocelot. Section III describes the im-
plementation of the PTX to x86 dynamic compiler. Section IV
presents performance results using the x86 backend. Section
VI reviews the most significant lessons learned. Section V
briefly covers related work and Section VIII concludes with
suggestions for future compilers.

II. OCELOT AND PTX

Ocelot is an open source project developed by the authors of
this paper. It is intended to provide a set of binary translation
tools from PTX to diverse many-core architectures. It currently
includes an internal representation for PTX, a PTX parser and
assembly emitter, a set of PTX to PTX transformation passes,
a PTX emulator, a dynamic compiler to many-core CPUs, a
dynamic compiler to NVIDIA GPUs, and an implementation
of the CUDA runtime. Our emulator, many-core compiler, and
GPU compiler support the full ptx1.4 specification and have
been validated against over 100 CUDA applications.

This section covers the salient of features of PTX that make
it a suitable intermediate representation for many-core CPUs
and dynamic compilation.

A. A Bulk-Synchronous Execution Model

We speculate that PTX and CUDA grew out of the de-
velopment of Bulk-Synchronous Parallel (BSP) programming
models first identified by Valiant [6]. PTX defines an execution
model where an entire application is composed of a series
of multi-threaded kernels. Kernels are composed of parallel
work-units called Concurrent-Thread-Arrays (CTAs), each of
which can be executed in any order subject to an implicit
barrier between kernel launches. This makes the PTX model
incredibly similar to the original formulation of the BSP
programming model.

The primary advantage of the BSP model is that it allows
an application to be specified with an amount of parallelism
that is much larger than the number of physical processors
without incurring excessive synchronization overheads. In the
case of PTX, a program can launch up to 232 CTAs per
kernel. CTAs can update a shared global memory space that
is made consistent across kernel launches, but they cannot
reliably communicate within a kernel. Like BSP programs,
these characteristics ensure that PTX programs can express
a large amount of parallelism that can be efficiently mapped
onto a machine with a smaller number of processors while
only periodically having to incur an expensive global barrier
to make memory consistent.

As a final point, PTX extends the BSP model to support
efficient mapping onto SIMD architectures by introducing
an additional level of hierarchy that partitions CTAs into
threads. Threads within a CTA can be mapped with relative
ease onto a hardware SIMD pipeline using a combination
of hardware support for predication, a thread context stack,
and compiler support for identifying reconverge points at
control-independent code [15]. In contrast with other popular
programming models for SIMD architectures which require

vector widths to be specified explicitly, the aforementioned
techniques allow PTX to be automatically mapped onto SIMD
units of different sizes. In the next section, we describe
how these abstractions, which were intended to scale across
future GPU architectures, can be mapped to many-core CPU
architectures as well.

B. Mapping The Model To A Machine

The goal of Ocelot is to provide a just-in-time compiler
framework for mapping the PTX BSP model onto a variety of
many-core processor architectures. This topic has previously
been explored from two complementary perspectives: 1) a
static compiler from CUDA to multi-core x86 described in
Stratton et al. [16] and extended by the same authors in [17],
and 2) our previous work exploring the dynamic translation
of PTX to Cell [18], and our characterization of the dynamic
behavior of PTX workloads [19]. From this body of work, we
drew the following insights that influenced the design of our
PTX to x86 dynamic compiler:

• From MCUDA: PTX threads within the same CTA can
be compressed into a series of loops between barriers.

• From our PTX to Cell work: Performing the compilation
immediately before a kernel is executed allows the num-
ber and configuration of threads to be used to optimize
the generated code.

• From our analysis of PTX kernels: Dynamic program
behavior such as branch divergence, memory intensity,
inter-thread data-flow, and activity factor can influence
the optimal mapping from PTX to a particular machine.

C. Thread Fusion

Mapping CTAs in a PTX program onto set of parallel
processor is a relatively simple problem because the execution
model semantics allow CTAs to be executed in any order. A
straightforward approach can simply iterate over the set of
CTAs in a kernel and execute them one at a time. Threads
within a CTA present a different problem because they are al-
lowed to synchronize via a local barrier operation. In MCUDA,
Stratton et al. suggested that this problem could be addressed
by beginning with a single loop over all threads and traversing
the AST to apply ”deep thread fusion” at barriers to partition
the program into several smaller loops. Processing the loops
one at a time would enforce the semantics of the barrier while
retaining a single-thread of execution. Finally, ”universal” or
”selective” replication could be used to allocate thread-local
storage for variables that are alive across barriers.

MCUDA works at the CUDA source and AST level, while
our implementation works at the PTX and CFG level. How-
ever, our approach applies the same concept of fusing PTX
threads into a series of loops that do not violate the PTX
barrier semantics and replicating thread local data.

D. Just-In-Time Compilation

The diversity of possible many-core architectures makes
static compilation for PTX at the very least overly general: any
change in architecture or input data could change the optimal



thread mapping scheme, schedule of generated code, or layout
of variables in memory. With the ability of the compiler to
fuse threads together [16], [20], redefine which threads are
mapped to the same SIMD units [15], re-schedule code to trade
off chache misses and register spills [21], and migrate code
across heterogeneous targets [18], recompiling an application
with detailed knowledge of the system being executed on and
a dynamic profile can result in significant performance and
portability gains.

In the context of this paper, dynamic compilation is used
primarily from a portability perspective to execute the same
CUDA programs on both NVIDIA GPUs and x86 CPUs. We
also highlight the significant differences between optimization
for CPU and GPU architectures that can be used in future
work dynamically map the same program to one of several
possible architectures.

E. Profile-Aware Compilation

In previous work, we identified several metrics that can be
used to characterize the behavior of PTX applications [19].
For example, we identified the amount of SIMD and MIMD
parallelism in an application, control flow divergence, memory
access patterns, and inter-thread data sharing. Bakhoda et al.
[22] and Collage et al. [23] take a more architecture-centric
approach by showing the impact of caches, interconnect, and
pipeline organization on specific workloads. Taken together,
this body of work provides basis for identifying memory
access patterns, control flow divergence, and data sharing
among threads as key determinants of performance in PTX
programs. Our implementation of Ocelot’s many-core backend
focuses on efficiently handling these key areas.

In addition to revisiting the insights provided by previous
work, our implementation exposed several other problems not
addressed in prior work, most significantly 1) on-chip memory
pressure, 2) context-switch overhead, and 3) variable CTA
execution time.

III. IMPLEMENTATION

This section covers the specific details of our PTX to x86
many-core dynamic compiler. At a high level, the process can
be broken down into the following operations: 1) extracting
the PTX binary from a CUDA application, 2) performing
transformations at the PTX level to create a form that is
representable in LLVM, 3) translation from PTX to LLVM,
4) LLVM optimizations, 5) laying out memory and setting up
the execution environment, and 6) initializing the runtime that
executes the program on a many-core processor.

A. PTX Binary Extraction

The first step in executing a CUDA program using Ocelot
is to extract the PTX binaries from the CUDA program so
that they can be translated. This process is very convoluted as
an artifact of the design of CUDA. It is also not currently
documented at the time that this paper was written; our
implementation was done by reverse engineering NVIDIA’s

Fig. 1. Extracting a Binary From a CUDA Application

reference libcudart.so. We include a detailed description here
for the benefit of others.

Rather than emitting PTX in binary format stored in the
.text section of an ELF or Window binary, the CUDA com-
piler (NVCC) performs a source-to-source transformation that
converts CUDA source files into C++ source files. All of the
CUDA kernels are compiled by NVCC into PTX and all of
the native C++ code is copied directly over. NVCC creates
a global variable (referred to as a fatBinary in the CUDA
headers) containing PTX assembly code for each CUDA
kernel and inserts it directly into the generated C++ source file.
It also creates one global constructor for each CUDA kernel
that makes a call into the CUDA Runtime API to register the
global variable. The native C++ compiler is then invoked to
generate a native binary.

This approach has the advantage of not requiring a different
backend to support different binary formats: the native com-
piler is responsible for generating the binary. However, it also
makes it nearly impossible to statically extract a PTX binary
from a CUDA program because the assembly code will be
stored in the program data section and it will be impossible to
distinguish between PTX binaries and generic global variables
until the program is executed. Ocelot includes an implemen-
tation of the CUDA Runtime API which intercepts the global
constructors that register each CUDA kernel. This process is
shown in Figure 1.

Unfortunately, as a consequence of the design of CUDA,
it is not currently possible for us to either modify the PTX
stored in a CUDA program nor insert translated code into a
preexisting binary. This forces us to re-translate each kernel
every time the program is executed. This is common practice
for most binary translators [24]–[27], but it does introduce
some overhead each time a program is executed.

B. Building The PTX IR

After PTX assembly programs are registered with the Ocelot
runtime, our implementation will parse each PTX program
and build an abstract syntax tree (AST) for the file. The
AST is incredibly simple because the PTX assembly language



only supports a few syntactical constructs with no nesting.
However, it is helpful for simplifying the implementation of
the parser which can handle multiple passes by first generating
the AST in a single pass and then traversing the AST to resolve
labels and variable names.

Once the AST has been generated, a Module is created for
each distinct AST. Ocelot borrows the concept of a Module
from LLVM [28] which contains a set of global variables and
functions. Similarly, our concept of a Module contains a set
of global data and texture variables which are shared among a
set of kernels. The portions of the AST belonging to distinct
kernels are partitioned and the series of instructions within
each kernel are used to construct a control flow graph for
each kernel.

Once this process has finished, there will be one Module
for each fat binary. Within each module, there will be one
control flow graph for each kernel. Our implementation of
a control flow graph does not contain any detailed analysis
information. If any of the later transformations require data-
flow, dominance, or mappings from identifiers to register
values these analyses will be lazily performed upon their first
use.

C. PTX to PTX Transformations

Once we have constructed the previously defined data-
structures for program analysis, it becomes possible to perform
code transformations on PTX programs. During translation
to LLVM, we lose concepts associated with the PTX thread
hierarchy such as barriers, atomic operations, votes, as well
as the exact number and organization of threads. Although
we do not perform any additional optimizations using this
information, we wanted our design to support doing these
optimizations at this stage rather than within the LLVM
infrastructure.

In order to support PTX transformations, we created an
optimization pass interface similar to that used by LLVM
where different optimization ”Passes” can be applied to a
Module, a Kernel, or a basic block. This design is motivated
by the idea that a manager can orchestrate the execution of
a series of optimization passes in a way that improves the
performance of generated code or improves the performance
of the optimizer. For example, the optimizer could apply the
series of passes to each block before moving on to the next
one to improve the locality of data accessed.

Using this infrastructure, we implemented two PTX opti-
mizations that eased the translation process to LLVM. In par-
ticular, we found it difficult to support predication and barriers
after translation to LLVM. Instead, we perform transforma-
tions at the PTX level to convert predication to conditional
selection and modify the control flow structure such that the
semantics of a barrier are satisfied even when executing the
program with a single thread.

PTX SSA Form. For any individual PTX kernel, the data-
flow graph retains information at the basic block level in
the form of live-in and live-out register sets. These sets are
computed using iterative data flow. A PTX kernel begins

in partial SSA form (infinite registers but no phi nodes).
Conversion to full SSA form is done using the live-in and
live-out sets for each basic block where each live in register
is converted into a phi instruction. As PTX does not have
a concept of a PHI instruction, these are maintained in the
separately in the data flow graph rather than the control flow
graph.

LLVM requires kernels to be in full SSA form, so all trans-
lated kernels are converted into this form before translation.
Alternatively, it would be possibly to avoid this conversion
stage using the LLVM Mem2Reg pass and treat all registers
as local variables. We chose not to use this optimization due
to the desirability of performing optimizations at the PTX
level, which could benefit from SSA form. Mem2Reg claims
to be extremely high performance (possibly better than our
implementation) so we may investigate this in the future if
the performance of SSA conversion is ever determined to be
significant.

Reversing If-Conversion. LLVM does not support predica-
tion at all. Instead it includes a conditional select instruction
similar to the PTX selp instruction. In order to handle PTX
code that uses predicated instructions that update variables (as
opposed to predicated branches which do not conditionally
update registers), we must convert from predicated instructions
in PTX to select instructions in LLVM. However, SSA form
significantly complicates the conversion from predication to
conditional selection.

Consider the following example PTX code before convert-
ing into SSA form.

ld.param.s32 r0, [condition];
mov.s32 r1, 0;
setp.ne.s32 p0, r0, r1;
@p0 add.s32 r1, r1, 1;

After converting into SSA form, the destination of the add
instruction is assigned a new register (r2).

ld.param.s32 r0, [condition];
mov.s32 r1, 0;
setp.ne.s32 p0, r0, r1;
@p0 add.s32 r2, r1, 1;

Now, converting the predicated add instruction to a regular
add followed by a conditional select instruction becomes
problematic.

@p0 add.s32 r2, r1, 1;

The orignal prediicated add instruction could map to a non-
predicated add paired with a select.

add.s32 temp, r1, 1;
selp.s32, r2, temp, ????, p0;

However, it is not possible to easily determine what to set
the value of r2 to if the predicate is not true. It is much simpler
to insert conditional select instructions before converting into
SSA form.

ld.param.s32 r0, [condition];



Fig. 2. Example of PTX Barrier Conversion

mov.s32 r1, 0;
setp.ne.s32 p0, r0, r1;
add.s32 temp, r1, 1;
selp.s32, r2, temp, r1, p0;

In which case it is simple to determine that r1 should be
the value of r2 if the predicate condition is false. SSA form
is universally praised in literature as simplifying compiler
analysis. This is one example at least where it is more difficult
to deal with.

Handling Barriers. A simple way of executing a PTX
program on a single-threaded architecture would be to just
loop over the program and execute it once for each thread.
Unfortunately this violates the semantics of the PTX barrier
instruction which assume that all threads execute up to the
barrier before any thread executes beyond the barrier. In order
to handle this case, we break each kernel into sub-kernels
beginning at either the program entry point or a barrier, and
ending at either a barrier or the program exit point. We can
then loop over each sub-kernel one at a time to make sure that
the semantics of a barrier are retained. However, we still have
to handle registers that are alive across the barrier.

We handle live registers by creating a barrier spill area in
local memory for each thread. For each program exit point
ending in a barrier, we save all live registers to the spill
area before exiting the program. For every program entry
point beginning with a barrier, we add code that restores live
registers from the spill area. The definition of local memory
ensures that the spill area will be private for each thread.

Figure 2 shows a simple example of this process. The left
program contains a single basic block with a barrier in the
middle. The right figure shows the program control flow graph
after removing barriers. The immediate successor of the entry
block decides whether to start from the original program entry
point or the barrier resume point. The left successor of this
block is the original program entry point and the right block

is the barrier resume point. Note that two live registers are
saved at the end of the left-most node. They are restore in the
rightmost block. During execution, all threads will first execute
the leftmost block then they will execute the rightmost block
and exit the program.

For a series of barriers, multiple resume points will be
created. After translation, we use the LLVM optimizer to
convert the chain of entry blocks into a single block with an
indirect jump.

D. The LLVM IR

LLVM ships with a full featured IR that is integrated with
their concept of a control flow graph. This representation is
rich enough to support all of the LLVM optimization transfor-
mations directly. We chose not to use this representation for
two reasons:

1) It is too heavy weight
• A standalone translator would require linking

against much of the LLVM codebase which is
significantly large at this point. This would increase
compilation time and generated binary size.

• We do not need any concepts of a LLVM control
flow graph, just a way to emit generated instruc-
tions.

2) It is actively being developed
• LLVM is constantly being changed and we assumed

that the internal representation would change more
frequently than the ISA1.

Based on these factors, we decided to implement our own
IR for the LLVM language. This IR is intended to be able to
represent any LLVM program, but be lightweight in the sense
that it is divorced from the control-flow graph and optimization

1Actually this turned out to be only partially true. During the implemen-
tation of Ocelot, LLVM actually changed the semantics of the Add and Sub
instructions and added new FAdd and FSub instructions.



passes. In this sense it is closer to an AST representation of
an LLVM assembly program. During translation, we create an
LLVM program in terms of this representation and emit it as
an assembly file which is then passed to the LLVM toolchain.

E. Translation to LLVM

Figure 3 shows the translated LLVM assembly for a simple
PTX program.

Our basic approach here is to do naive translation, meaning
that we examine PTX instructions one at a time and then
generate an equivalent sequence of LLVM instructions.

More precisely, we assume that PTX transformations have
been applied to a kernel and that it has been converted into
full SSA form. We begin by creating an LLVM function for
each PTX kernel. This function is passed a single parameter
which contains the context for the thread being executed. This
makes generated code inherently thread-safe because each
thread context can be allocated and managed independently.

Once the function has been created, we walk the PTX
control flow graph and examine each basic block. For each
basic block, we examine the dataflow graph to get the set of
PHI instructions and emit one LLVM PHI instruction for each
live in register. We then iterate over each PTX instruction and
dispatch to a translation function for that instruction, which
generates an equivalent sequence of LLVM instructions. Note
that it would be possible to consider multiple PTX instructions
at a time and generate a smaller sequence of LLVM instruc-
tions. We instead choose to generate an excessive number of
instructions during translation and rely on the LLVM peephole
optimizer to remove redundant code.

Most PTX instructions correspond exactly to equivalent
LLVM instructions and require trivial translation. However,
some special cases are mentioned below.

Rounding Modes. PTX supports all of the IEEE754 round-
ing modes (to nearest, to infinity, to -infinity, to zero). How-
ever, LLVM only supports rounding to the nearest int. We
support to infinity and to -infinity by respectively adding or
subtracting 0.5 before rounding a number. This introduces
one extra instruction of overhead. To zero is supported by
determining if the number is greater or less than zero and
conditionally adding or subtracting 0.5. This introduces three
extra instructions of overhead.

Special Registers. Special Registers in PTX are used to
provide programs with a fast mechanism of obtaining sta-
tus information about the thread that is currently executing.
They allow single instruction access to the thread’s id, the
CTA’s id, the CTA dimensions, the Kernel dimensions, several
performance counters, and the thread’s mapping to a warp.
We allocate a lightweight thread context for each host thread
and update it to reflect the currently executing thread on a
context-switch. For PTX instructions that try to read from a
special register, we issue loads to the corresponding field in
the thread’s context.

Special Functions. Special Functions such as sin, cos,
exp, log, inverse, texture interpolation, etc are supported as
instructions in PTX and are accelerated by dedicated hardware

in GPUs. CPUs generally do not have equivalent support
so these instructions are translated into function calls into
standard library implementations. This introduces a significant
overhead when executing these instructions.

Different Memory Spaces. PTX supports six distinct mem-
ory spaces: parameter, local, shared, global, constant, and
texture. These spaces are handled by including a base pointer
to each space in the context of the current thread and adding
this base pointer to each load or store to that space. The
texture, constant, parameter, and global memory spaces are
shared across all CTAs in a Kernel. However, each CTA
has a unique shared memory space and each thread has a
unique local memory space. These spaces present a problem
because allocating separate shared memory to each CTA and
local memory to each thread would consume an excessive
amount of memory. We currently allow a single CTA to be
executed a time by each host pthread and all of the threads in
those CTAs to be executed. Only enough memory to support
threads ∗ pthreads is allocated at a time and this memory is
shared across different CTAs and threads in a Kernel. In order
to avoid excessive allocation/deallocation operations, we only
resize the shared and local memory spaces when they increase
in size. There is currently no bounds checking implemented
in our LLVM translator, and this implementation may allow
out of bounds memory accesses to silently succeed for some
Kernels. However, it would be relatively easy to add checking
code to each memory access in a future revision of Ocelot
because we have the entire map of allocated memory for each
space at runtime2.

Shared Memory Wrapping. While verifying our translator
we noticed that some older versions of the NVIDIA compiler
would add large offsets to registers containing addresses that
were eventually used to access shared memory. We can only
speculate as to why this was done. However, NVIDIA’s
implementation of CUDA is able to execute these programs
without making out of bounds accesses by masking off the
upper bits of the address. In order to support older CUDA
programs we also needed to mask off these bits using explicit
LLVM instructions before performing any shared memory
access. This introduced some overhead to all shared memory
accesses.

Memory Alignment. PXT requires all memory accesses
to be aligned to an address that is evenly divisible by the
access size. This implicitly relies on the fact that all memory
spaces will begin at addresses that are aligned to the largest
possible access size (currently 32 bytes in PTX). We map some
PTX memory accesses to vector operations in LLVM, which
also must conform to alignment restrictions. Unfortunately,
standard library implementations of new/malloc do not strictly
enforce alignment requirements. In order to handle these cases,
we wrapped malloc and new to always allocate memory in
units of (bytes + 32) when allocating memory for a PTX
memory space and then manually align the returned values

2The PTX emulator included with Ocelot actually does bounds checking
by default



Fig. 3. Sample PTX Application and Corresponding LLVM

to 32-byte boundaries.
Uninitialized Registers. A consequence of the SSA form

used in LLVM is that the definition of all values must dominate
all uses. The NVIDIA compiler will sometimes generate code
where registers can potentially be used undefined as in the
following code example:

int value;
if( condition )
{

value = 1;
}
return value;

In this case, even if condition is always true, the compiler
may not be able to prove this statically during compilation
and there exists a path in the program where value used
uninitialized. Or, equivalently, value = 1; does not dominate
return value;. In order to handle these cases, we rely on data
flow analysis which will generate an alive-in register set at the
entry to the program with one entry for each register that is
possibly used uninitialized. During translation, we add a new
block immediately after the program entry point that sets all
of these registers to 0.

F. LLVM Transformations

LLVM provides a very comprehensive library of optimizing
compiler transformations as well as either a static code emitter
or a lazy code emitter. The static emitter will generate x86
instructions for the entire kernel before executing it. The
lazy emitter will generate x86 instructions dynamically, as
the program is being executed by trapping segfaults generated
when the program tries to jump into a block that has not yet
been compiled. The lazy emitter is complicated by the fact that
we execute kernels in parallel using multiple host threads. At
the very least, the x86 code generator would need to lock
the generated code region so that only a single thread could

update it at a time. This would introduce overhead into the
compilation of a kernel. PTX kernels are typically small with
good code coverage and are cooperative executed by multiple
threads so we use the static emitter by default.

Dynamic compilers typically have to trade off time spent
optimizing code against the additional time spent executing
unoptimized code. For CUDA applications, kernels are exe-
cuted over and over by thousands of threads, making it seem
like investment in early optimization would pay off over time.
Our initial implementation included the basic optimization
passes available in opt, the llvm optimizer for O0, O1, O2,
and O3. After several experiments, we found that the inter-
procedural optimizations included in OPT were not relevant
for optimizing single PTX kernels and subsequently removed
them. Figure 9 shows the impact of different optimizations
passes on selected benchmarks. Note that for long running
benchmarks, the advantages of applying higher optimizations
can outweigh the overhead of spending more time in the
optimizer, but this is not necessarily the case for shorter
applications. In the future we plan to use a decision model to
use static information about the number of threads and code
size of each kernel to determine the optimization level to apply.

G. Environment Setup

Translating the instructions from PTX To LLVM to x86
is only part of the process of executing a PTX program on
a many-core processor. It also involves allocating space for
statically allocated variables, propagating the locations of these
variables to references in the program, as well as allocating
OpenGL buffers and variables bound to textures.

Global Variables. Global variables in PTX present a prob-
lem from a compilation perspective because they can condi-
tionally be linked to dynamic memory allocations declared
externally from the PTX program and bound at runtime using
the CUDA Runtime API. Alternatively, they can be private
to the PTX program and not shared across kernel launches.



We considered one approach to handling global variables that
involved replacing instructions that load or store to global
identifiers with calls that would dynamically lookup the ad-
dress of the variable before execution the memory operation.
This approach would return either the address of the bound
variable if the variable was declared externally, or the address
of a local copy. The approach would allow a program to be
translated and linked a single time, but it would also introduce
the overhead of an indirect lookup for every memory access
to a global variable.

In order to avoid this overhead, we chose to implement a
different mechanism. We first allocate a memory region for
each kernel large enough to accommodate all kernel private
variables. We then scan though the instructions in the kernel
and replaced accesses to these variables with static offsets
into this memory region. This handles the private variables.
External variables are declared as globals in LLVM and their
identifiers are saved in a list. The LLVM code emitter is
then used to compile the kernel without linking the external
variables. Upon executing a kernel, existing mappings for these
variables are cleared and the LLVM linker is used to bind
references to the most currently mapped memory for that
variable.

OpenGL Interoperability. CUDA provides support for
OpenGL interoperability on linux via a set of API functions
that allow CUDA kernels to write directly into OpenGL
buffers. This process involves registering an OpenGL buffer
with the CUDA runtime and then obtaining a pointer to the
base of the buffer. When running on a GPU, writes to the area
of memory will be forwarded directly to a specific OpenGL
buffer. If this buffer is also stored in GPU memory, avoiding a
round trip from GPU memory to CPU memory back to GPU
memory can provide a significant performance advantage. This
trade-off is reversed when kernels are run on the CPU. We use
the OpenGL API to obtain pointers to a host memory region
that is mapped to an OpenGL buffer. These are passed directly
as parameters to kernels. The OpenGL runtime forwards writes
to this memory region to the memory on the GPU, possibly
introducing overhead compared to running the same kernel
natively on a GPU.

Texture Interpolation. Graphics applications rely heavily
on the process of texture mapping - intuitively this is the
process of wrapping a 2D image around a 3D geometry using
interpolation. Most modern GPUs include hardware support
for texture mapping in the form of floating point units that
perform load operations from floating point addresses. These
addresses are wrapped or clamped to the dimensions of a 1D or
2D image bound to a texture. For addresses that do not fall on
integer values, nearest point, linear, or bilinear interpolation is
used to compute a pixel value from the surrounding pixels. For
non-graphics applications, textures can be used to accelerate
interpolation for image or signal processing.

In PTX, textures are exposed in the ISA using instructions
that sample different color channels given a set of floating
point coordinates. Modern CPUs do not have hardware sup-
port for interpolation. Furthermore, this operation is complex

enough that it cannot be performed using a short sequence
of LLVM instructions. In order to reduce the complexity of
the LLVM translator, we implemented a texture interpolation
library to emulate the interpolation operations in software.
Unfortunately, there is no formal specification for the floating
point format/precision or the exact interpolation method used
by NVIDIA GPUs, making it difficult to validate our imple-
mentation. During the design, we created several unit tests that
compared the results of texture operations run using NVIDIA’s
implementation to our library. We refined our implementation
until the results were within a small enough margin or error
to pass the built-in regression tests in the CUDA SDK.

In terms of performance, our library executes a function
call with a significant number of instructions. The GPU
implementation can perform the interpolation in conjunction
with the memory access. This severely limits the performance
of applications that execute a significant number of texture
instructions when executing on CPUs. As an example of
this behavior, we tested the performance of a Sobel filter
application which includes equivalent implementations, one
using texture interpolation and one without. From a series
of simple test, we determined that the texture interpolation
implementation was relatively faster on the GPU, but slower
on the CPU.

H. Runtime

Once a kernel has been translated, it must be executed in
parallel on all of the cores in a CPU. We use the Hydrazine
threading library [29] (which itself wraps pthreads on Linux)
to bind one worker thread to each CPU core. Upon program
initialization, all of the worker threads are started and put to
sleep until a kernel is executed. When a kernel is executed,
the main thread will assign a subset of CTAs to each thread
and signal each worker to begin executing the kernel. The
main thread will then block until all workers have completed
in order to preserve the semantics of the bulk-synchronous
execution model.

In our implementation of the runtime, we were very careful
about the number of synchronization routines used during
kernel execution and were able to reduce it to one condition
variable broadcast when the kernel is launched and then one
condition variable signal per worker threads when the kernel
completes. The overhead of creating/destroying worker threads
is mitigated by reusing the same threads to execute a series of
kernels.

This approach to distributing CTAs to worker threads was
sufficiently efficient for many applications. However, special
considerations were needed to handle atomic memory opera-
tions and CTAs with variable execution times.

Atomic Operations. Atomic operations in PTX are useful
for performing commutative operations with low overhead
across CTAs in a program. For example, they can be used
to implement an efficient reduction across a large number of
CTAs. As useful as they are, atomic operations introduce some
difficulties when being executed by multiple worker threads.
Straightforward solutions involving locking access to atomic



CPU Intel i920 Quad-Core 2.66Ghz
Memory 8GB DDR-1333 DRAM
CPU Compiler GCC-4.4.0
GPU Compiler NVCC-2.3
OS 64-bit Ubuntu 9.10

TABLE I
TEST SYSTEM

operations may introduce an excessive amount of overhead
as locks can involve much higher overhead than atomic op-
erations supported by hardware. LLVM alternatively supports
a series of intrinsic operations that expose hardware support
for the atomic operations in PTX. In order to determine the
performance impact of locks compared to atomic operations,
we ran several microbenchmarks to determine the execution
time of simple PTX kernels that exclusively performed a long
series of atomic operations, using pthread mutexes for atomic
operations. We found that the average time to acquire a highly
contested lock, perform an atomic operation, and release the
lock was less than 20x slower than simply performing the
same operation with one thread and no locks. In other words,
locking and unlocking a contested lock was only 20x slower
than issuing a load and then a store instruction. This was a
significantly better result than we were expecting and thus we
did not move on to use LLVM atomic intrinsics.

CTA Scheduling. The initial implementation of the Ocelot
runtime used a static partitioning scheme where the 2D space
of CTAs was projected onto a 1D space and divided equally
among the worker threads. This scheme proved effective for
many applications where the execution time of CTAs was
constant. However, several applications, particularly the SDK
Particles example, exhibited variable execution time for each
CTA leading to cases where some worker threads would finish
their set of CTAs early and sit idle until the kernel completed.

To address this problem we considered the classical work
stealing approaches as well as different static partitioning
schemes. We eventually settled on a different static partitioning
scheme due to excessive synchronization overheads associated
with work stealing. We noticed that for several applications,
the execution time of a CTA was strongly correlated with
that of its neighbors. In the Particles example, this is the
case because neighboring CTAs process neighboring particles,
which are more likely to behave similarly. We implemented
an interleaved partitioning scheme where the 2D space was
still mapped onto a 1D space, but the space was traversed
beginning at an offset equal to the worker threads ID, and
incremented by the total number of worker threads. This made
it more likely that each worker thread would be assigned a set
of CTAs with a similar distribution of execution times.

IV. RESULTS

This Section covers a preliminary analysis of the per-
formance of several CUDA applications when translated to
LLVM. Note that this section is intended to merely provide
several distinct points of reference of the scaling and through-
put possible when translating CUDA applications to x86. We

plan to follow up this study with a detailed characterization
of the performance of CUDA applications across a range
of GPU and CPU platforms with the intent of identifying
program characteristics that are more suited to one style of
architecture. For all of the experiments in this section, we use
the system configuration given in Table I. We begin with a
set of experiments exploring the performance limits of our
compiler using a set of microbenchmarks, moving on to a
classification of runtime overheads, and ending with a study
of the scalability of several full applications using multiple
cores.

A. Microbenchmarks

In order to quickly evaluate the performance limitations of
our implementation, we wrote several low level PTX bench-
marks designed to stress various aspects of the system. In order
to write and execute PTX programs outside of the NVIDIA
compilation chain, which does not accept inlined assembly,
we extended the CUDA Runtime API with two additional
functions to allow the execution of arbitrary PTX programs.
The function registerPTXModule allows inserting strings or
files containing PTX kernels at runtime and getKernelPointer
obtains a function pointer to any registered kernel that can be
passed directly to cudaLaunch.

void registerPTXModule(
std::istream& module,
const std::string& moduleName );

const char* getKernelPointer(
const std::string& kernelName,
const std::string& moduleName );

Using this infrastructure, we explored memory bandwidth,
atomic operation throughput, context-switch overhead, in-
struction throughput, and special function throughput. These
measurements were taken from a real system, and thus there is
some measurement noise introduced by lack of timer precision,
OS interference, dynamic frequency scaling, etc. These results
were taken from the same system and include at least 100
samples per metric. We present the sample mean in the form
of bar charts, and 95% confidence intervals for each metric.

Memory Bandwidth. Our first microbenchmark explores
the impact of memory traversal patterns on memory band-
width. This experiment is based off of prior work into optimal
memory traversal patterns on GPUs [7], which indicates that
accesses should be coalesced into multiples of the warp size
to achieve maximum memory efficiency. When executing on
a GPU, threads in the same warp would execute in lock-
step, and accesses by from a group of threads to consecutive
memory locations would map to contiguous blocks of data.
When translated to a CPU, threads are serialized and coalesced
accesses are transformed into strided accesses. Figure 4 shows
the performance impact of this change. The linear access pat-
tern represents partitioning a large array into equal contiguous
segments and having each thread traverse a single segment
linearly. The strided access pattern represents a pattern that
would be coalesced on the GPU. It is very significant that



Fig. 4. Maximum Bandwidth for Strided and Linear Accesses

Fig. 5. Atomic Operation Slowdown

the strided access pattern is over 10x slower when translated
to the CPU. This indicates that the optimal memory traversal
pattern for a CPU is completely different than that for a GPU.

Atomic Operations. The next experiment details the inter-
action between the number of host worker threads and atomic
operation overhead. This experiment involves an unrolled
loop consisting of a single atomic increment instruction that
always increments the same variable in global memory. The
loop continues until the counter in global memory reaches a
preset threshold. As a basis for comparison, we ran the same
program where a single thread incremented a single variable
in memory until it reached the same threshold. Figure 5 shows
the slowdown of the atomic increment compared to the single-
thread version for different numbers of CPU worker threads.
These results suggest that the overhead of atomic operations
in Ocelot are not significantly greater than on GPUs.

Context-Switch Overhead. This experiment explores the
overhead of a context-switch when a thread hits a barrier.
Our test consists of an unrolled loop around a barrier, where

Fig. 6. Barrier Throughput

Fig. 7. Basic Integer and Floating Point Instruction Throughput

several variables are initialized before the loop and stored
to memory after the loop completes. This ensures that they
are all alive across the barrier. In order to isolate the effect
of barriers on a single thread, we only launched one thread
and one CTA for this benchmark. In this case, a thread will
hit the barrier, exit into the Ocelot thread scheduler, and be
immediately scheduled again.

Figure 6 shows the measured throughput, in terms of num-
ber of barriers processed per second. Note that the performance
of a barrier decreases as the number of variables increases,
indicating that a significant portion of a context-switch is
involved in saving and loading a thread’s state. In the same
way that the number of live registers should be minimized in
GPU programs to increase the number of thread’s that can be
active at the same time, programs translated to the CPU should
actively try to minimize the number of live registers to avoid
excessive context-switch overhead.

Instruction Throughput. The fourth microbenchmark at-
tempts to determine the limits on integer and floating point



Fig. 8. Special Function Throughput

instruction throughput when translating to a CPU. The bench-
mark consists of an unrolled loop around a single PTX
instruction such that the steady state execution of the loop will
consist only of a single instruction. We tested 32-bit and 64-bit
integer add, and floating point multiply-accumulate, the results
of which are shown in Figure 7. The theoretical upper bound
on integer throughput in our test system is 3 integer ALUs ∗
4 cores ∗ 2.66 ∗ 109 cycles/s = 31.2 ∗ 109ops/s. 32-bit adds
come very close to this limit, achieving 81% of the maximum
throughput. 64-bit adds achieve roughly half of the maximum
throughput. 32-bit floating point multiply-accumulate opera-
tions are much slower, only achieving 4GFLOPs on all 4 cores.
This is slower than the peak performance of our test system,
and we need to explore the generated x86 machine code
to understand exactly why. These results suggest that code
translated by Ocelot will be relatively fast when performing
integer operations, and slow when performing floating point
operations.

Special Function Throughput. The final microbenchmark
explores the throughput of different special functions and
texture sampling. This microbenchmark is designed to expose
the maximum sustainable throughput for different special
functions, rather than to measure the performance of special
functions in any real application. To this end, the benchmarks
launch enough CTAs such that there is at least one CTA
mapped to each worker thread. Threads are serialized in these
benchmarks because there are no barriers, so the number of
threads launched does not significantly impact the results.
The benchmarks consist of a single unrolled loop per thread
where the body consists simply of a series of independent
instructions. To determine the benchmark parameters that gave
the optimal throughput, the number of iterations and degree
of unrolling was increased until less than a 5% change in
measured throughput was observed. We eventually settled on
16 CTAs, 128 threads per CTA, 2000 iterations each of which
contains a body of 100 independent instructions. Inputs to
each instruction were generated randomly using the Boost 1.40

Application Startup Latency (s) Teardown Latency (s)
CP 4.45843e-05 6.07967e-05
MRI-Q 3.48091e-05 8.55923e-05
MRI-FHD 3.62396e-05 8.4877e-05
SAD 4.14848e-05 5.45979e-05
TPACF 3.48091e-05 8.70228e-05
PNS 4.48227e-05 8.53539e-05
RPES 4.17233e-05 6.12736e-05

TABLE II
KERNEL STARTUP AND TEARDOWN OVERHEAD

implementation of Mersenne Twister, with a different seed for
each run of the benchmark. The special functions tested were
reciprocal (rcp), square-root (sqrt), sin, cos, logarithm base 2
(lg2), 2power (ex2), and 1D, 2D, and 3D texture sampling.

Figure 8 shows the maximum sustainable throughput for
each special function. The throughputs of these operations
are comparable when run on the GPU, which uses hardware
acceleration to quickly provide approximate results. Ocelot
implements these operations with standard library functions,
incurring the overhead of a fairly complex function call per
instruction in all cases except for rcp, which is implemented
using a divide instruction. Rcp can be used as a baseline, as
it shows the throughput of the hardware divider. Based on
these results, we conclude that the special operation throughput
using Ocelot is significantly slower than the GPU, even more
so than the ratio of theoretical FLOPs on one architecture to
the other. Additionally, the measurements include a significant
amount of variance due to the random input values. This is
a different behavior than the GPU equivalents, which incur a
constant latency per operation.

B. Runtime Overheads

In order to tune our implementation and identify bottlenecks
that limited the total application performance, we designed
an experiment to measure the startup cost of each kernel,
the overhead introduced by optimizing LLVM code before
executing it, and finally the contribution of various translation
operations to the total execution time of a program.

Kernel Startup and Teardown. The use of a multi-
threaded runtime for executing translated programs on multi-
core CPUs introduces some overhead for distributing the set
of CTAs onto the CPU worker threads. We instrumented
Ocelot using high precision linux timers to try to measure this
overhead. Table II shows the measured startup and teardown
cost for each kernel. Note that the precision of these timers
is on the order 10us, thus the results indicate that the startup
and teardown costs are less than the precision of our timers.
These are completely negligible compared to the overheads
of translation and optimization. In the future, we may explore
more dynamic work distribution mechanisms such as work
stealing that take advantage of this headroom.

Optimization Overhead. In order to determine the rela-
tive overhead of applying different levels of optimization at
runtime, we instrumented the optimization pass in Ocelot to
determine the amount of time spent in optimization routines.



Fig. 9. Optimization Overhead

Fig. 10. Parboil Scaling with Different Optimization Levels

We ran the experiment on every application in the parboil
benchmark suite to identify any differences in optimization
time due to the input program’s structure. Figure 9 shows that
O3 is never more than 2x slower than O1. Optimization for
size is almost identical to O2 in all cases, and O3 is only
significantly slower than O2 for pns and sad.

To determine the impact of different optimization levels on
the total execution time of different applications, we measured
the execution time of each of the Parboil benchmarks with
different levels of optimization. Figure 10 shows these results,
where the best optimization level depends significantly on
the application. For CP, MRI-Q, and SAD, the overhead of
performing optimizations can not be recovered by improved
execution time, and total execution time is increased for any
level of optimization. The other applications benefit from
O1, and none of the other optimization levels do better than
O1. Note that the LLVM to x86 JIT always applies basic
register allocation, peephole instruction combining, and code
scheduling to every program regardless of optimizations at

Fig. 11. Contribution of Each Source of Overhead

the LLVM level. These may make many optimizations at the
LLVM level redundant, not worth dedicating resources to at
execution time. Also, we should note that the optimizations
used here were taken directly from the static optimization tool
OPT, which may not include optimizations that are applicable
to dynamically translated programs. A more comprehensive
study is needed to identify optimizations are applicable to
applications that are sensitive the optimization complexity.

Component Contribution. As a final experiment into the
overheads of dynamic translation, we used callgrind [30]
to determine the relative proportion of time spent in each
translation process. Note that callgrind records basic block
counts in each process, which may be different than total
execution time. Figure 11 shows that the vast majority of the
translation time is spent in the LLVM code generator. The
decision to use our own LLVM IR only accounts for 6% of
the total translation overhead. The time it takes to translate
from PTX to LLVM is less than the time needed to parse
either PTX or LLVM, and the speed of our PTX parser is on
par with the speed of LLVM’s parser. LLVM optimizations
can be a major part of the translation time, but removing if-
conversion and barriers from PTX takes less than 2% of the
total translation time. These results justify many of the design
decisions made when implementing Ocelot’s translator.

C. Full Application Scaling

Moving on from micro-benchmarks to full applications, we
studied the ability of CUDA applications to scale to many
cores on a multi-core CPU. Our test system includes a pro-
cessor with four cores, each of which supported hyperthread-
ing. Therefore, perfect scaling would allow performance to
increase with up to 8 CPU worker threads. This is typically not
the case due to shared resources such as caches and memory
controllers, which can limit memory bound applications.

We used the Parboil benchmarks as examples of real CUDA
applications with a large number of CTAs and threads; our
previous work shows that the Parboil applications launch
between 5 thousand and 4 billion threads per application
[19]. Figure 12 shows the normalized execution time of each



Fig. 12. Parboil Scaling with Number of Worker Threads

application using from 1 to 8 CPU worker threads. All of
the applications scale well to two threads, but not necessarily
beyond that. The CP benchmark is able to achieve better than
a 4x speedup using 8 threads, indicating that it is probably
compute bound and is able to benefit from hyperthreading.
Conversely, SAD slows down when the number of threads is
increased beyond two, indicating that the additional threads
are probably competing for memory bandwidth and cache
occupancy. These results suggest that some applications are
significantly more suited to execution on multi-core CPUs than
others. We are particularly interested in determining if these
trends hold on GPUs as well, or if there are some applications
that scale well on GPUs, but poorly on CPUs and visa versa.

V. RELATED WORK

This paper focuses on comparing Ocelot’s dynamic com-
piler with two main bodies of work: 1) compilation frame-
works from CUDA to architectures other than GPUs, and 2)
dynamic binary translators.

A. From CUDA to CPUs

The attractive features coupled with the growing acceptance
of the CUDA programming model have driven an emerging
body of work intent on mapping CUDA to architectures
other than GPUs. To the best of our knowledge, MCUDA
[16] introduced by Stratton et al. was the first to address
this problem. A key difference between MCUDA and other
related work is the direction of mapping: MCUDA provides a
mapping from CUDA applications to CPUs, while OpenMP to
GPU [31], MPI to CUDA [32], and Hadoop using CUDA [33]
map from domain specific languages to GPUs. This concept
has been extended even so far as to allowing CUDA programs
to generate synthesizable RTL for FPGAs by Papakonstantinou
et al. [34]. As industry looks for a scalable solution for
programming multi-core CPUs and many-core architectures
such as Rigel [9], IRAM [35], RAW [36], and Trips [37],

CUDA and OpenCL remain the only industry-accepted im-
plementations of explicitly parallel, BSP [6] programming
models. The principle idea behind MCUDA, allowing CUDA
to be mapped to architectures other than GPUs, enables a
single body of bulk-synchronous applications to be brought to
bear to the significant challenge of programming many-core
architectures.

B. Dynamic Binary Translation

The first industrial implementations of dynamic binary
translation were pioneered by Digital in FX32! [38] to ex-
ecute x86 binaries on the Alpha microarchitecture. Transmeta
extended this work with a dynamic translation framework
that mapped x86 to a VLIW architecture [39]. Several Java
compilers have explored translating the Java Virtual Machine
to various backends [24]. Even the hardware schemes that
translate x86 to microops used in AMD [14] and Intel x86 [13]
processors can be considered to be completely hardware forms
of binary translation. These forms of binary translation are
used to enable compatibility across architectures with different
ISAs.

Another complementary application of binary translation
is for program optimization, instrumentation, and correctness
checking. The Dynamo [27] system uses runtime profiling in-
formation to construct and optimize hot-paths dynamically as a
program is executed. Pin [26] allows dynamic instrumentation
instructions to be inserted and removed from a running binary.
Valgrind [30] guards memory accesses with bounds checking
and replaces memory allocation functions with book-keeping
versions so that out-of-bounds accesses and memory leaks can
be easily identified.

Ocelot employs both forms of binary translation: PTX is
translated to LLVM and then to x86 for compatibility, while
program optimizations are selectively applied to CUDA ker-
nels. However, several challenges typically faced by dynamic
binary translation systems are significantly simplified by the



CUDA programming model, which we took advantage of
in the design of Ocelot. Most significantly, 1) kernels are
typically executed by thousands or millions of threads, making
it significantly easier to justify spending time optimizing
kernels, which are likely to be the equivalent of hot paths
in normal programs; 2) the self-contained nature of CUDA
kernels allows code for any kernel to be translated or optimized
in parallel with the execution of any other kernel, without
the need for concerns about thread-safety; 3) code and data
segments in PTX are kept cleanly distinct and registered ex-
plicitly with the CUDA Runtime before execution, precluding
any need translate on-the-fly.

VI. INSIGHTS GAINED

These preliminary results allowed us to make the following
recommendations about the design of future compilers and
binary translators for explicitly parallel BSP languages: 1)
managing on-chip memory pressure must be a primary con-
cern, 2) there must be a low overhead mechanism for context-
switches, which should occur as infrequently as possible,
3) the work distribution mechanism should tolerate variable
CTA execution time, and 4) compiler optimizations should be
aware of the thread hierarchy and parallel intrinsics (atomics,
barriers, etc).

A. On-Chip Memory Pressure

One of the assumptions behind the PTX programming
model is that all threads in a CTA are alive at the time that
the CTA is executed. This implicitly assumes that there are
enough on-chip resources to accommodate all threads at the
same time to avoid a context-switch penalty. For GPU style
architectures, this puts pressure on the register capacity of a
single multi-processor; if the total number of registers needed
by all of the threads in a CTA exceeds the register file capacity,
the compiler must spill registers to memory. For CPU style
architectures, this puts pressure on the cache hierarchy; all
live registers must be spilled on a context-switch which will
hopefully hit in the L1 data cache. If the total number of live
registers needed by all threads in a CTA exceeds the cache
capacity, a CTA-wide context-switch could flush the entire L1
cache. Programs without barriers have an advantage from the
perspective of memory pressure because there is no need to
keep more than one thread alive at a time.

The PTX model indirectly addresses this problem with the
concept of a CTA. This reduces the number of threads that
must be alive at the same time from the total number of threads
in a kernel to the CTA size. This partitioning maps well to
the hardware organization of a GPU and most CPUs which
have local memory per core (either a shared register file or L1
cache). Future architectures may introduce additional levels of
hierarchy to address increasing on-chip wire latency. A scal-
able programming model for these architectures should extend
to a multi-level hierarchy of thread groups, and the compiler
should be able to map programs with deep hierarchies to
architectures with more shallow memory organizations.

B. Context-Switch Overhead

The results from our barrier micro-benchmark show that
there is a non-trivial overhead associated with context-
switching from one thread to another. This suggests that
the compiler should actively try to reduce the number of
context switches. In our implementation, we only context-
switch on barriers. However, it may be possible to reduce
the number of context-switches by identifying threads that
can never share data and allowing disjoint sets of threads to
pass through barriers without context-switching. This could
be done statically using points-to analysis or dynamically by
deferring context-switches to loads from potentially shared
state. Additionally, it may be possible to reduce the context-
switch overhead by scheduling independent code around the
barrier to reduce the number of variables that are alive across
the barrier.

C. Variable CTA Execution Time

Several of the applications in this paper demonstrate the
importance of evenly distributing CTAs across cores in a CPU
or GPU. From these results and our implementation, we be-
lieve that work distribution schemes must simultaneously deal
with two constraints that follow from locality among CTAs:
1) neighboring CTAs are likely to have similar execution
times, and 2) neighboring CTAs are likely to access similar
memory locations. In other words, mapping neighboring CTAs
to the same processor core will improve memory locality,
but lead to uneven work distributions. Conversely, random
partitioning schemes will hurt memory locality, but even out
work distributions. We would like to see additional work that
addresses this problem using static analysis as well as runtime
adaptive mapping.

D. Parallel-Aware Optimizations

A significant amount of effort in our implementation was
spent dealing with barriers and atomic operations in PTX,
and that all of the compiler transforms available in LLVM
were oblivious to these program semantics. In the future,
we believe that there could be significant progress made
in developing compiler optimizations that are aware of the
PTX thread hierarchy and primitive parallel operations. For
example, sections of threads that are independent of the thread
id could be computed by one thread and then broadcast to
others, barriers could be reorganized to reduce the number of
context-switches, and threads that take the same control paths
could be fused together into a single instruction stream.

VII. OPEN PROBLEMS AND FUTURE WORK

An open problem facing efforts like this is finding the right
balance between abstractions that hide architecture features
and semantics that expose program characteristics to dynamic
compilers and hardware optimizers. Stratton et al. implicitly
argue in MCUDA that the CUDA programming model is a
step in the right direction, and we agree. However, the relative
performance differences between equivalent CPU and GPU
implementations shown in this work indicate that CUDA is



only an adequate, not a perfect solution. Memory mapping
and traversal patterns, synchronization overhead, and optimal
instruction mix are some of potentially many hardware features
that are not abstracted away from the programmer. Memory
pressure, non-uniform work distribution, thread divergence,
and thread-fission/fusion are opportunities for dynamic opti-
mization that are lost in state-of-the art compilation chains. It
is our opinion that the changes required to solve this problem
conclusively would require an impossibly automatic mapping
from the definition of a problem to its efficient hardware
solution.

The infrastructure developed by the authors and described in
this paper is geared towards solving a more modest problem:
can we identify those program characteristics that make a
program more or less suited to execution on a particular style
of architecture? Even if we are far away from automatically
changing the memory traversal pattern of a program, can
we identify those architectures for which a given pattern is
efficient? In future work immediately succeeding this study,
we plan to explore this problem in detail by: 1) identifying
key application characteristics that impact relative performace
on GPUs vs CPUs, and 2) coupling this information with
dynamic mapping schemes proposed in our prior work [40]
to automatically map CUDA kernels to one of many potential
GPUs or CPUs in a heterogeneous system.

VIII. CONCLUSIONS

This paper presents a detailed overview of Ocelot’s binary
translator from PTX to Multi-core x86 CPUs. Through the
study of our translator using several microbenchmarks and
full applications, we were able to identify on-chip memory
pressure, context-switch overhead, and variable CTA execution
time as fundamental issues that must be addressed when
compiling highly parallel programs to systems with few hard-
ware resources. In the future, these issues will have to be
addressed as systems continue to migrate towards many-core
architetcures, and developers seek programming models that
can scale to them.
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